JTW > Courses > 1016-420: Complex Variables > Course Calendar
[Sitemap]

This table gives a tentative timetable for the course. Everything in it (including possibly the dates of exams and homeworks) is subject to change.

Chapter, section and problem numbers are from Zill and Wright, Advanced Engineering Mathematics, Fourth Edition

Tuesday Þursday
Tuesday Þursday
Wk01 Nov 27

Chapter 17: Functions of a Complex Variable

17.1: The Algebra of Complex Numbers

Practice Problems: 17.1.1, 17.1.5, 17.1.9, 17.1.13, 17.1.15, 17.1.27, 17.1.35, 17.1.39

[worksheet] [solutions]

Nov 29

Chapter 17: Functions of a Complex Variable

17.2-17.3: The Geometry of the Complex Plane [handout]

Practice Problems: 17.2.7, 17.2.11, 17.2.13, 17.2.23, 17.2.33, 17.2.39, 17.3.5, 17.3.17

[worksheet] [solutions]

Wk02 Dec 4

Chapter 17: Functions of a Complex Variable

17.4: Complex Differentiation

Practice Problems: 17.4.1, 17.4.5, 17.4.9, 17.4.13, 17.4.17, 17.4.21, 17.4.33, 17.4.37

Problem Set 1 (Sec. 17.1-17.3) due

Dec 6

Chapter 17: Functions of a Complex Variable

17.5: The Cauchy-Riemann Equations

Practice Problems: 17.5.1, 17.5.3, 17.5.9, 17.5.15, 17.5.17, 17.5.23, 17.5.25, 17.5.29, 17.5.32

Wk03 Dec 11

Chapter 17: Functions of a Complex Variable

17.6: Exponential and Logarithmic Functions

Practice Problems: 17.6.3, 17.6.7, 17.6.15, 17.6.23, 17.6.25, 17.6.33, 17.6.35, 17.6.41

Problem Set 2 (Sec. 17.4-17.5) due

Dec 13

Chapter 17: Functions of a Complex Variable

17.7: Trigonometric and Hyperbolic Functions

Practice Problems: 17.7.5, 17.7.7, 17.7.11, 17.7.15, 17.7.19, 17.7.21, 17.7.29, 17.7.30

[worksheet] [solutions]

Wk04 Dec 18

Chapter 18: Integration in the Complex Plane

18.1: Contour Integrals

Practice Problems: 18.1.1, 18.1.3, 18.1.5, 18.1.7, 18.1.13, 18.1.17, 18.1.19, 18.1.21, 18.1.23

Problem Set 3 (Sec. 17.6-17.7) due

Dec 20

Chapter 18: Integration in the Complex Plane

18.2, 18.3: Cauchy-Goursat Theorem; Independence of Path

Practice Problems: 18.2.9, 18.2.11, 18.2.15, 18.2.21, 18.3.1, 18.3.7, 18.3.15, 18.3.17, 18.3.19

Holiday

Break

Wk05 Jan 8

Review for Prelim Exam 1

Problem Set 4 (Sec. 18.1-18.3) due

Jan 10

FIRST

PRELIM

EXAM

(Chapters 17-18)

Wk06 Jan 15

Chapter 18: Integration in the Complex Plane

18.4: Cauchy's Integral Formulas

Practice Problems: 18.4.1, 18.4.3, 18.4.7, 18.4.9, 18.4.15, 18.4.17, 18.4.19, 18.4.21, 18.4.23

Jan 17

Chapter 19: Series and Residues

19.1: Sequences and Series

Practice Problems: 19.1.3, 19.1.7, 19.1.9, 19.1.11, 19.1.15, 19.1.19, 19.1.21, 19.1.23, 19.1.25, 19.1.27

Wk07 Jan 22

Chapter 19: Series and Residues

19.2: Taylor Series

Practice Problems: 19.2.1, 19.2.3, 19.2.9, 19.2.11, 19.2.13, 19.2.19, 19.2.23, 19.2.27, 19.2.29, 19.2.35

Problem Set 5 (Sec. 18.4-19.1) due

Jan 24

Chapter 19: Series and Residues

19.3: Laurent Series

Practice Problems: 19.3.1, 19.3.3, 19.3.7, 19.3.9, 19.3.11, 19.3.13, 19.3.15, 19.3.21, 19.3.25, 19.3.27

Wk08 Jan 29

Chapter 19: Series and Residues

19.4-19.5: Zeros, Poles and Residues

Practice Problems: 19.4.1, 19.4.5, 19.4.9, 19.4.13, 19.4.19, 19.5.5, 19.5.13, 19.5.17, 19.5.21, 19.5.29

Problem Set 6 (Sec. 19.2-19.3) due

Jan 31

Chapter 19: Series and Residues

19.6: Evaluation of Real Integrals

Practice Problems: 19.6.3, 19.6.5, 19.6.9, 19.6.11, 19.6.13, 19.6.21, 19.6.23, 19.6.29, 19.6.31

Wk09 Feb 5

Chapter 20: Conformal Mappings

20.1: Complex Functions as Mappings

Practice Problems: 20.1.1, 20.1.5, 20.1.7, 20.1.11, 20.1.13, 20.1.15, 20.1.21, 20.1.23, 20.1.25, 20.1.29

Problem Set 7 (Sec. 19.4-19.6) due

Feb 7

Chapter 20: Conformal Mappings

20.2, 20.6: Conformal Mappings (list) & Applications

Practice Problems: 20.2.1, 20.2.3, 20.2.5, 20.2.7, 20.2.9, 20.2.19, 20.2.23, 20.6.1, 20.6.3, 20.6.5

Wk10 Feb 12

Review for Prelim Exam 2

Problem Set 8 (Sec. 20.1-20.2) due

Feb 14

SECOND

PRELIM

EXAM

(Chapters 19-20)


Last Modified: 2012 December 18

Dr. John T. Whelan / john.whelan@astro.rit.edu / Associate Professor, School of Mathematical Sciences & Center for Computational Relativity and Gravitation, Rochester Institute of Technology

The contents of this communication are the sole responsibility of Prof. John T. Whelan and do not necessarily represent the opinions or policies of RIT, SMS, or CCRG.

HTML 4.0 compliant CSS2 compliant