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Thursday 17 January 2013

1 Sequences and Series in the Complex Plane

1.1 Motivation and Perspective

Sequences and series can be sort of an abstract subject in calculus, whether real or complex.
It’s useful to keep an eye on why we’re considering all these things, so let’s take a top-down
rather than bottom-up approach. We’re fundamentally interested in a power series, which
is a complex function of z of the form

∞∑
k=0

ak(z − z0)k (1.1)

where the {ak}, as well as z0, are complex constants. This is a special case of a general
infinite series

∞∑
k=0

wk (1.2)

where {wk} is a progression of complex numbers. The infinite series is implicitly defined as
a limit

∞∑
k=0

wk = lim
n→∞

n∑
k=0

wk = lim
n→∞

Sn (1.3)

which is the limit of a sequence of partial sums {Sn}. If that limit exists, we say the sequence
{Sn} converges. Formally, the limit

L = lim
n→∞

Sn (1.4)

means that for any ε > 0 there is an N such that |Sn − L| < ε whenever n > N . It’s not too
hard to see that

L = lim
n→∞

Sn if and only if Re(L) = lim
n→∞

Re(Sn) and Im(L) = lim
n→∞

Im(Sn) (1.5)

1.2 Tests for Convergence

You may recall from real calculus an array of tests for whether an infinite series converged.
There are corresponding tests in complex analysis, and we quote the most important of them.

1.2.1 The nth Term Test

A nearly trivial test is whether the terms in a series are getting progressively smaller with
increasing n:

∞∑
k=0

wk converges only if lim
n→∞

wn = 0 (1.6)
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This is not so useful, though, since it can only be used to show that a series diverges, not
that it converges.

1.2.2 Absolute Convergence and the Ratio Test

The concept of absolute convergence exists for complex series as well as real ones, but now
the absolute value in question is the modulus:

∞∑
k=0

wk converges absolutely means
∞∑
k=0

|wk| converges (1.7)

Absolute convergence is used in the ratio test, which examines the limit of
∣∣∣wk+1

wk

∣∣∣:
• If limk→∞

∣∣∣wk+1

wk

∣∣∣ = L < 1,
∑∞

k=0wk converges absolutely.

• If limk→∞

∣∣∣wk+1

wk

∣∣∣ = L > 1, or limk→∞

∣∣∣wk+1

wk

∣∣∣ =∞,
∑∞

k=0wk diverges.

• If limk→∞

∣∣∣wk+1

wk

∣∣∣ = 1, we can’t say whether the series converges or not.

1.3 Radius of Convergence

We now want to consider the question of convergence for a power series

∞∑
k=0

ak(z − z0)k (1.8)

in which wk = ak(z − z0)
k. Since the terms in the series depend on z, the series will in

general converge for some values of z and diverge for some others. If we apply the ratio test,
the quantity in question is

lim
k→∞

∣∣∣∣wk+1

wk

∣∣∣∣ = lim
k→∞

∣∣∣∣ak+1(z − z0)k+1

ak(z − z0)k

∣∣∣∣ = |z − z0| lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ (1.9)

So,

• If limk→∞

∣∣∣ak+1

ak

∣∣∣ = 0, then the series converges absolutely, no matter what z is.

• If limk→∞

∣∣∣ak+1

ak

∣∣∣ =∞, then the series will only converge if z = z0. (If z = z0, then the

series only has one term, a0.)
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• If limk→∞

∣∣∣ak+1

ak

∣∣∣ = 1
R

where 0 < R <∞, then the series will converge absolutely if

|z − z0|
R

< 1 (1.10)

i.e., for any z such that
|z − z0| < R . (1.11)

It will diverge if
|z − z0|
R

> 1 (1.12)

i.e., for any z such that
|z − z0| > R (1.13)

Since |z − z0| = R, which separates the regions where the power series converges and diverges,
is a circle of radius R centered on z0, R is known as the radius of convergence for the power
series

∑∞
k=0 ak(z − z0)

k. The series converges absolutely everywhere inside this circle of
convergence, and diverges outside it. For points on the circle, it may converge or diverge.

If a power series converges for all z, we say its radius of convergence is infinite; if it
converges only when z = z0, its radius of convergence is said to be zero.

1.4 Geometric Series

Just now we saw that a power series
∑∞

k=0 ak(z − z0) converges inside some circle centered
at z0, whose radius R is called the radius of convergence for the series. I.e.,

∞∑
k=0

ak(z − z0) converges when |z − z0| < R and diverges when |z − z0| > R (1.14)

For another example of this, consider the geometric series

1 + z + z2 + . . . =
∞∑
k=0

zk (1.15)

If we multiply the partial sum Sn =
∑n

k=0 z
k by 1− z, we find

(1− z)Sn = (1− z)
n∑
k

zk = (1− z)(1 + z + z2 + . . .+ zn) = 1− zn+1 (1.16)

but that means

Sn =
1− zn+1

1− z
=

1

1− z
− zn+1

1− z
(1.17)
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The second term goes to zero as n goes to infinity, if |z| < 1, and it diverges if |z| > 1. So

∞∑
k=0

zk =
1

1− z
if |z| < 1 (1.18)

The series
∑∞

k=0 z
k is called a geometric series, and its circle of convergence is a circle of

radius 1 centered on the origin.
This also works with other expressions substituted for z, so

1− z + z2 − z3 + . . .
∞∑
k=0

(−z)k =
1

1 + z
if |z| < 1 (1.19)

and
∞∑
k=0

(z − i)k =
1

1 + i− z
if |z − i| < 1 (1.20)

etc.

Practice Problems

19.1.3, 19.1.7, 19.1.9, 19.1.11, 19.1.15, 19.1.19, 19.1.21, 19.1.23, 19.1.25, 19.1.27

Tuesday 22 January 2013

2 Taylor Series

A Taylor series is a power series of the form

∞∑
k=0

ak(z − z0)k = a0 + a1(z − z0) + a2(z − z0)2 + . . . (2.1)

which, for some neighborhood of the point z0, converges to a function f(z) which is analytic
in the same neighborhood. There are various theorems stated in Zill and Wright which say
that you can do sensible things with a convergent series, like differentiate and integrate it
“term-by-term”; given that you can do these things, you can work out the coëfficients {ak}
by requiring the function and all of its derivatives to match up with the series at the point
z = z0:

f(z) = a0 + a1(z − z0) + a2(z − z0)2 + . . . (2.2a)

f ′(z) = a1 + 2a2(z − z0) + 3a3(z − z0)2 + . . . (2.2b)

f ′′(z) = 2a2 + 3 · 2a3(z − z0) + 4 · 3a4(z − z0)2 + . . . (2.2c)

f (3)(z) = 3 · 2a3 + 4 · 3 · 2a4(z − z0) + 5 · 4 · 3a5(z − z0)2 + . . . (2.2d)

... (2.2e)
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so

f(z0) = a0 (2.3a)

f ′(z0) = a1 (2.3b)

f ′′(z0) = 2a2 (2.3c)

f (3)(z0) = 3 · 2a3 (2.3d)

... (2.3e)

It’s not so hard to see the general pattern

f (n)(z0) = n!an (2.4)

so the coëfficients are

an =
f (n)(z0)

n!
(2.5)

and

f(z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k when the series converges (2.6)

This is called the Taylor series for f(z) with center z0. As a special case, the Taylor series
with center 0 is called the Maclaurin series

f(z) =
∞∑
k=0

f (k)(0)

k!
zk when the series converges (2.7)

The question we haven’t addressed yet is for which z the Taylor series converges. Since it’s a
power series, we expect it to converge inside some circle centered on z0. Moving out from z0,
the series ought to be well-behaved (i.e., convergent) as long as the function is well-behaved
(i.e., analytic). So it shouldn’t be surprising that the radius of convergence is the distance
from z0 to the nearest point where f(z) fails to be analytic.

You can show this using Cauchy’s integral theorems. If we can draw a circle CR(z0)
centered on z0, of radius R > |z − z0|, which lies entirely in the domain where the function
is analytic, we can use Cauchy’s integral theorem to write

f(z) =
1

2πi
	
∫
CR(z0)

f(s)

s− z
ds (2.8)

where we call the integration variable s, since it’s a letter we haven’t used before. Note that
CR(z0) is not centered on z, but z lies inside the curve, which is all we need for Cauchy’s
integral theorem. Since we’re interested in derivatives at z0, we write the denominator as

s− z = s− z0 − (z − z0) = (s− z0)
(

1− z − z0
s− z0

)
(2.9)
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We can then use the geometric series, with z−z0
s−z0 in place of z, to write

1

s− z
=

1

s− z0

(
1 +

z − z0
s− z0

+
(z − z0)2

(s− z0)2
+ . . .+

(z − z0)n

(s− z0)n
+ Tn+1

)
(2.10)

where the remainder term is

Tn+1 =

(z−z0)n+1

(s−z0)n+1

1− z−z0
s−z0

=
(z − z0)n+1

(s− z0)n+1

s− z0
s− z0 − (z − z0)

=
(z − z0)n+1

(s− z0)n+1

s− z0
s− z

(2.11)

Since s is the integration variable along the circle of radius R centered at z0, |s− z0| = R,
and since z is a point inside that circle,

|z − z0| < R = |s− z0| (2.12)

which means that ∣∣∣∣z − z0s− z0

∣∣∣∣ < 1 (2.13)

which means that we should not be surprised that the remainder term goes to zero as n→∞,
although the real demonstration considers this a little more carefully. Keeping that term for
now, we have

1

s− z
=

1

s− z0
+

z − z0
(s− z0)2

+
(z − z0)2

(s− z0)3
+ . . .+

(z − z0)n

(s− z0)n+1
+

(z − z0)n+1

(s− z)(s− z0)n+1
; (2.14)

when we substitute that into (2.8) it gives us

f(z) =
1

2πi
	
∫
CR(z0)

f(s)

s− z0
ds+

z − z0
2πi

	
∫
CR(z0)

f(s)

(s− z0)2
ds+ . . .

+
(z − z0)n

2πi
	
∫
CR(z0)

f(s)

(s− z0)n+1
ds+

(z − z0)n+1

2πi
	
∫
CR(z0)

f(s)

(s− z)(s− z0)n+1
ds

(2.15)

We can apply Cauchy’s integral theorem for derivatives, using the point z0 rather than z
this time, to each of the integrals except the last one and get

f(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2!
(z − z0)2 + . . .+

fn(z0)

n!
(z − z0)n +Rn+1(z) (2.16)

where the remainder integral is

Rn+1(z) =
(z − z0)n+1

2πi
	
∫
CR(z0)

f(s)

(s− z)(s− z0)n+1
ds (2.17)

which we can show goes to zero using the ML limit. If we write |z − z0| = ρ, we’ve already
noted that ρ < R = |s− z0|. If we think about the geometry in the complex plane, z0, z,
and s are the corners of a triangle, and the triangle inequality says that

|s− z| ≥ |s− z0| − |z − z0| = R− ρ (2.18)
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so
1

|s− z|
≤ 1

R− ρ
(2.19)

Since f(s) is analytic along CR(z0), it must remain finite all along that circle, and so we can
write the maximum of is modulus as M and then |f(s)| ≤ M all along CR(z0). Thus the
modulus of the integrand is bounded by∣∣∣∣ f(s)

(s− z)(s− z0)n+1

∣∣∣∣ ≤ M

(R− ρ)Rn+1
; (2.20)

the length of the curve is the circumference 2πR, so

|Rn+1(z)| = ρ

2π

∣∣∣∣	∫
CR(z0)

f(s)

(s− z)(s− z0)n+1
ds

∣∣∣∣ ≤ ρn+1

2π

M

(R− ρ)Rn+1
(2πR) =

MR

R− ρ

( ρ
R

)n+1

(2.21)
which does indeed go to zero as n→∞, because

|z − z0| = ρ < R = |s− z0| (2.22)

so we have, for any z inside a circle centered on z0 which fits inside the domain of analyticity
of f(z),

f(z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k |z − z0| < radius of convergence (2.23)

2.1 Calculation of Taylor Series

In practice, we only actually use the explicit form of the Taylor series coëfficients in terms
of the derivatives for a few functions. Mostly we use the Maclaurin series for ez (and the
related series for cos z, sin z, cosh z and sinh z) and for 1

1−z with appropriate expressions in
place of z.

For example, if f(z) = ez, then f (k)(z) = ez, so f (k)(0) = 1 and

ez = 1 + z +
z2

2
+
z3

3!
+ . . . =

∞∑
k=0

zk

k!
(2.24)

from which we can find, e.g.,

cosh z =
ez + e−z

2
=
∞∑
k=0

1

k!

zk + (−z)k

2
=

∞∑
k=0
k even

zk

k!
=
∞∑
n=0

z2n

(2n)!
(2.25)

We can expand the same function in Taylor series around different origins. Consider the
function f(z) = 1

z+i
; we know this is analytic everywhere except at z = −i. Let’s expand it

first in a Maclaurin series, and then in a Taylor series about the center z = 1.
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To expand in a Maclaurin series, write

1

z + i
=
−i

1− iz
= −i

∞∑
k=0

(iz)k =
∞∑
k=0

ik−1zk (2.26)

This series has a radius of convergence equal to the distance from z = 0 to z = −i, which is
R = 1.

On the other hand, if we want to use the center z0 = 1, we need to expand in powers of
z − 1. To do this we write

1

z + i
=

1

1 + i+ (z − 1)
(2.27)

Next we want to divide the numerator and denominator by 1 + i, noting that

1

1 + i
=

1

1 + i

1− i
1− i

=
1− i

2
(2.28)

so

1

z + i
=

1− i
2

1

1− −1+i
2

(z − 1)
=

1− i
2

∞∑
k=0

(
−1 + i

2

)k
(z−1)k =

∞∑
k=0

(−1)

(
−1 + i

2

)k+1

(z−1)k

(2.29)
This series has a radius of convergence equal to the distance from the center z0 = 1 to the
singularity −i, which is

√
2.

2.2 Taylor Series and Branch Cuts

Exercise 19.2.31

Practice Problems

19.2.1, 19.2.3, 19.2.9, 19.2.11, 19.2.13, 19.2.19, 19.2.23, 19.2.27, 19.2.29, 19.2.35

Thursday 24 January 2013

3 Laurent Series

The Taylor series is a way of writing an analytic function f(z) as a series

f(z) =
∞∑
k=0

ak(z − z0)k =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k (3.1)

inside some disk |z − z0| < R in which f(z) is analytic. The Laurent series is an extension to
this which is valid in some annulus (ring) r < |z − z0| < R. In general it includes negative
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powers of z − z0, so it looks like

f(z) =
∞∑

k=−∞

ak(z− z0)k = · · ·+ a−2
(z − z0)2

+
a−1
z − z0

+a0 +a1(z− z0) +a2(z− z0)2 + · · · (3.2)

The negative powers of z − z0 means it won’t converge at z = z0, and there are generally
one or more points in the circle |z − z0| ≤ r for which the function is not analytic.

Consider, for example, the function f(z) = sin z
z3

. This is analytic everywhere except at
z = 0, but since it is undefined there, we cannot expand it in a Taylor series about z = 0.
But we know that sin z has the Taylor series

sin z = z − z3

3!
+
z5

5!
− . . . =

∞∑
k=1
k odd

(−1)(k−1)/2

k!
zk =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 (3.3)

so it follows that

f(z) =
sin z

z3
=

1

z2
− 1

3!
+
z2

5!
− . . . =

∞∑
k=−2
k even

(−1)(k+2)/2

(3 + k)!
zk =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n−2 (3.4)

This series converges for all z except z = 0, i.e., for 0 < |z|.
Just as Taylor’s theorem shows that there always exists a Taylor series which converges in

a circular region in which f(z) is analytic, by using Cauchy’s integral formula on a inside that
region which encloses both z and z0, so there is a Laurent’s theorem which shows that there
is always a Laurent series which converges in an annular region in which f(z) is analytic.
Remember that by using Cauchy’s integral formula and then expanding

1

s− z
=

1

(s− z0)− (z − z0)
=
∞∑
k=0

(z − z0)k

(s− z0)k+1
(3.5)

valid when |s− z0| > |z − z0|, we could write

f(z) =
1

2πi
	
∫
CR(z0)

f(s)

s− z
ds =

∞∑
k=0

(z − z0)k

2πi
	
∫
CR(z0)

f(s)

(s− z0)k+1
ds (3.6)

We then used Cauchy’s integral theorem for derivatives to write the second part in terms of
derivatives of the function f(z), evaluated at z0, but that second step won’t be applicable
for the Laurent series demonstration, since f(z) is not analytic everywhere inside the curve,
just in the annulus.

The starting point is also somewhat different, since it requires a closed curve which
encloses z and lies within the annulus r < |z − z0| < R. Since the function f(z) needs to
be analytic everywhere inside the curve, it can’t actually have any points where |z − z0| < r
inside it. So we need to use some C-shaped curve K made up of four parts:
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1. A counter-clockwise circle CR2(z0) once around the annulus at radiusR2 where |z − z0| <
R2 < R

2. An inward cut from the radius R2 to r1 where r < r1 < |z − z0|

3. A clockwise circle once around the annulus at radius r1

4. An outward cut from the radius r1 back to R2

The second and fourth pieces cancel out, and the first an third pieces mean

f(z) =
1

2πi
	
∫
K

f(s)

s− z
ds =

1

2πi
	
∫
CR2

(z0)

f(s)

s− z
ds− 1

2πi
	
∫
Cr1 (z0)

f(s)

s− z
ds (3.7)

In both integrals, we write
1

s− z
=

1

(s− z0)− (z − z0)
(3.8)

By construction, the first integral has |s− z0| = R2 > |z − z0| and the second integral has
|s− z0| = r1 < |z − z0|. In the first integral we can expand, as in the case of the Taylor
series,

1

s− z
=

1

(s− z0)− (z − z0)
=

1

s− z0
1

1− z−z0
s−z0

=
∞∑
k=0

(z − z0)k

(s− z0)k+1
(3.9)

which converges because
∣∣∣ z−z0s−z0

∣∣∣ < 1. On the other hand, in the second series, we can write

1

s− z
=

1

(s− z0)− (z − z0)
= − 1

z − z0
1

1− s−z0
z−z0

= −
∞∑
k=0

(s− z0)k

(z − z0)k+1
(3.10)

This allows us to write

f(z) =
∞∑
k=0

(z − z0)k

2πi
	
∫
CR2

(z0)

f(s)

(s− z0)k+1
, ds+

∞∑
k=0

(z − z0)−k−1

2πi
	
∫
Cr1 (z0)

f(s)

(s− z0)−k
, ds . (3.11)

(There is a more careful statement in terms of remainder integrals and the ML-limit in Zill
and Wright.) If we reorganize the summation index in the second series as n = −k− 1, and
rename the summation index in the first series we get

f(z) =
∞∑
n=0

(z − z0)n

2πi
	
∫
CR2

(z0)

f(s)

(s− z0)n+1
, ds+

−1∑
n=−∞

(z − z0)n

2πi
	
∫
Cr1 (z0)

f(s)

(s− z0)n+1
, ds (3.12)

Since the integrand f(s)
(s−z0)n+1 is analytic everywhere in the annulus r < |s− z0| < R, we can

replace the contours in both integrals with any contour C which goes once clockwise around
the annulus, and combine the sums:

f(z) =
∞∑

n=−∞

(z − z0)n

2πi
	
∫
C

f(s)

(s− z0)n+1
, ds (3.13)
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In practice we never find the coëfficients by evaluating these contour integrals; we either
start from a Taylor series or we apply a trick using the geometric series

1

1− w
=
∞∑
k=0

wk |w| < 1 (3.14)

3.1 Calculation of Laurent Series

3.1.1 Example 19.3.17

3.1.2 Example 19.3.19

Practice Problems

19.3.1, 19.3.3, 19.3.7, 19.3.9, 19.3.11, 19.3.13, 19.3.15, 19.3.21, 19.3.25, 19.3.27

Tuesday 29 January 2013

4 Zeros, Poles and Residues

4.1 Poles and Zeros

Last week we saw that a function which was analytic in some annular region r1 < |z − z0| < r2
could be expanded in a Laurent series

f(z) =
∞∑

k=−∞

ak(z − z0)k (4.1)

which converged in that region. Typically, we get different series in concentric annuli centered
on z0, which have singular points of f(z) at their borders. Consider the innermost region
0 < |z − z0| < R, and split the Laurent series valid in that region into negative and non-
negative powers of z − z0:

f(z) =
−1∑

k=−∞

ak(z − z0)k +
∞∑
k=0

ak(z − z0)k =
∞∑
k=1

a−k
(z − z0)k

+
∞∑
k=0

ak(z − z0)k (4.2)

The sum of positive powers
∑∞

k=0 ak(z − z0)k is called the analytic part of the series (since
it converges to an analytic function) and the sum of negative powers

∑∞
k=1 a−k(z − z0)−k is

called the principal part. It is useful to categorize a series by the most negative power of
z − z0 in its Laurent series:

• If the principal part of the series vanishes, but the original function f(z) is not continu-
ous at z = z0, we say the function has a removable singularity at z = z0. For example,
consider

f(z) =
sin z

z
(4.3)

12



which us undefined at z = 0. Since the Maclaurin series for sin z is

z − z3

3!
+
z5

5!
− . . . , (4.4)

the Laurent series for f(z), valid for 0 < |z|, is

1− z2

3!
+
z4

5!
− . . . (4.5)

which converges to 1 at z = 0. Of course, in this case, we can define a function

g(z) =

{
sin z
z

z 6= 0

1 z = 0
(4.6)

which “removes” the singularity.

• If a−n is non-zero but the principal part of the series has no terms ak with k < −n,
i.e.,

f(z) =
∞∑

k=−n

ak(z − z0)k =
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ . . . (4.7)

then we say that f(z) has a pole of order n at z0. A pole of order 1 is also called a
simple pole. For example, since

z + i

(z − i)2
=
z − i+ 2i

(z − i)2
=

2i

(z − i)2
+

1

z − i
(4.8)

we say that z+i
(z−i)2 has a pole of order 2 at z = i.

• If the principal part of the Laurent series contains arbitrarily negative powers of z−z0,
then the function has an essential singularity at z = z0. For example,

e1/z =
∞∑
k=0

1

k!

(
1

z

)k
=
∞∑
k=0

z−k

k!
(4.9)

has an essential singularity at z = 0.

It is very important to keep in mind that the Laurent series to use is the one valid in a
“punctured neighborhood” of the point z = z0. See Chapter review question 19.3.

Note that if the lowest power appearing in the Laurent series is positive, then the series
converges to a regular function which is zero at z0. If the first non-zero term in the sum is
an(z − z0)n, with n > 0, we say the function has a zero of order n at z = z0.

Often the way to figure out the order of a pole is to write the function as a ratio of
analytic functions. If f(z0) 6= 0, and g(z) has a zero of order n at z0, then f(z)/g(z) has a
pole of order n at z0. So for example,

(z + 2)ez

(z − 3)2(z + i)
(4.10)

13



has a pole of order 2 at z = 3 and a pole of order 1 at z = i. However,

z2 − 1

(z − 1)2
(4.11)

has a pole at z = 1 of order one, not two, because

z2 − 1

(z − 1)2
=

(z + 1)(z − 1)

(z − 1)2
=
z + 1

z − 1
(4.12)

4.2 Residues

Consider the case where a function f(z) is singular at z = z0 but analytic for 0 < |z − z0| <
R; we say that z0 is an isolated singularity, and by Laurent’s theorem we can write

f(z) =
∞∑

k=−∞

ak(z − z0)k (4.13)

where

ak =
1

2πi
	
∫
C

f(z)

(z − z0)k+1
dz (4.14)

for any curve C which goes ones counter-clockwise around z0 in the region 0 < |z − z0| < R.
In particular,

a−1 =
1

2πi
	
∫
C
f(z) dz (4.15)

but this tells us that the integral of f(z) arount an isolated singularity is just determined by
the coëfficient of (z − z0)−1 in the Laurent series. This coëfficient is thus important enough
that it has a name, “the residue of f(z) at z0”. We write

	
∫
C
f(z) dz = 2πiRes(f(z), z0) = 2πia−1 (4.16)

There are different ways to calculate the residue:

• If we have the Laurent series valid for 0 < |z − z0| < R, we can just read off a−1.

• If it’s a simple pole,

f(z) =
a−1
z − z0

+ a0 + a1(z − z0) + a2(z − z0)2 + . . . (4.17)

so
Res(f(z), z0) = lim

z→z0
(z − z0)f(z) (4.18)
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• similarly, if z0 is a pole of order n,

Res(f(z), z0) = lim
z→z0

dn−1

dzn−1
(z − z0)nf(z) (4.19)

• If f(z) = g(z)/h(z) where g(z0) 6= 0 and h(z) = 0, then

Res(f(z), z0) =
g(z0)

h′(z0)
(4.20)

4.2.1 The Residue Theorem

Knowing the residues of a function at all of its poles makes it very easy to integrate that
function around a closed curve. This is because we can always deform the contour into a
series of little loops, one around each pole, with connections between them which cancel out.
The result is that, if a function has poles at {zk} which are inside a contour C,

	
∫
C
f(z) dz =

∑
k

	
∫
Ck
f(z) dz = 2πi

∑
k

Res(f(z), zk) . (4.21)

This is called Cauchy’s Residue Theorem.

Practice Problems

19.4.1, 19.4.5, 19.4.9, 19.4.13, 19.4.19, 19.5.5, 19.5.13, 19.5.17, 19.5.21, 19.5.29
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Thursday 31 January 2013

5 Using Contour Integrals to Evaluate Real Integrals

Armed with Cauchy’s residue theorem, we can now evaluate many different contour integrals
around closed curves. As we’ll now see, this in turn lets us evaluate many real integrals by
converting them into integrals in the complex plane. These integrals may be around closed
curves, or they may form a part of a closed curve.

5.1 Integrals of the Form
∫ 2π

0 F (cos θ, sin θ) dθ

The first sort of integral is of the form∫ 2π

0

F (cos θ, sin θ) dθ (5.1)

We evaluate it by making the substitution z = eiθ. Then by noting that

cos θ =
eiθ + e−iθ

2
=
z + z−1

2
(5.2a)

sin θ =
eiθie−iθ

2i
=
z − z−1

2i
(5.2b)

we can identify the integral as a parametrization of a contour integral clockwise around the
unit circle, since

dz = ieiθ dθ = iz dθ (5.3)

which means ∫ 2π

0

F (cos θ, sin θ) dθ = 	
∫
C1(0)

F

(
z + z−1

2
,
z − z−1

2i

)
dz

iz
(5.4)

where C1(0) is the unit circle |z| = 1.
For example,∫ 2π

0

1

1 + cos θ/2
dθ = 	

∫
C1(0)

1

1 + (z + z−1)/4

dz

iz
= 	
∫
C1(0)

4 dz

i(z2 + 4z + 1)
(5.5)

Now, the integrand has poles when z2 + 4z+ 1 = 0, which the quadratic formula tells us are
at

z± =
−4±

√
16− 4

2
= −2±

√
3 (5.6)

This means that we can factor

z2 + 4z + 1 = (z − z+)(z − z−) . (5.7)
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The integrand
4

i(z − z+)(z − z−)
(5.8)

thus has simple poles at z− = −2−
√

3 and z− = −2−
√

3. These are both on the real axis.
Noting that

√
3 ≈ 1.73, we see that z− < −1 so it is outside the unit circle, but −1 < z+ < 1

so it is inside the unit circle. This means the contour integral includes only the contribution
from the residue at z+, i.e.,

	
∫
C1(0)

4 dz

i(z2 + 4z + 1)
= 2πiRes

(
4

i(z − z+)(z − z−)
, z+

)
. (5.9)

Since z+ is a simple pole we can calculate the reside using

Res(f(z), z0) = lim
z→z0

(z − z0)f(z) (5.10)

which is

Res

(
4

i(z − z+)(z − z−)
, z+

)
=

4

i(z − z−)

∣∣∣∣
z=z+

=
4

i(z+ − z−)
=

4

i2
√

3
=

2

i
√

3
(5.11)

This means ∫ 2π

0

1

1 + cos θ/2
dθ = 2πi

(
2

i
√

3

)
=

4π√
3

(5.12)

Exercise: compare this calculation to exercise 19.6.1 in Zill and Wright.

5.2 Improper Integrals

The second type of integral we’re interested in is an integral of the form∫ ∞
−∞

g(x) dx (5.13)

where g(x) has one of several useful forms (usually a rational function, or a rational function
times cosαx or sinαx). In this case, we think of the integral over x as an integral in the
complex plane along the real line, which we treat as a piece of a closed contour.

An integral with plus or minus infinity in the limits of integration is called an improper
integral, and it’s defined by a limit. Strictly speaking, we’re supposed to take an independent
limit for each end of the integral, so∫ ∞

−∞
g(x) dx = lim

R−→∞
lim

R+→∞

∫ R+

−R−

g(x) dx (5.14)

so that we can break up the integral∫ ∞
−∞

g(x) dx =

∫ 0

−∞
g(x) dx+

∫ ∞
0

g(x) dx (5.15)

where each integral is defined by an independent limit. However, even if the limits at both
ends of the integral don’t converge, you can sometimes define a way to take both limits at
once to get what is known as the Cauchy Principal Value for the integral.
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5.2.1 Cauchy Principal Value

Consider the integral ∫ ∞
−∞

2x

1 + x2
dx (5.16)

The integrand is an odd function of x, and the range of integration looks symmetrical, so
you might think the integral should be zero. But the limits associated with both ends of the
integral don’t converge independently, as can be checked by calculating∫ ∞

0

2x

1 + x2
dx = lim

R→∞

∫ R

0

2x

1 + x2
dx = lim

R→∞

[
ln(1 + x2)

]R
0

= lim
R→∞

ln(1 +R2) (5.17)

which is undefined. However, we can define something called the Cauchy Principal Value of
the integral as

P.V.

∫ ∞
−∞

2x

1 + x2
dx = lim

R→∞

∫ R

−R

2x

1 + x2
dx = lim

R→∞

[
ln(1 +R2)− ln(1 +R2)

]
= 0 (5.18)

It is this integral which we calculate with the contour integration technique, even if the
standard improper integral is divergent.

Note that this is not as trivial as it sounds; for example,

lim
R→∞

∫ 2R

−R

2x

1 + x2
dx = lim

R→∞

[
ln(1 + 4R2)− ln(1 +R2)

]
= ln 4 6= 0 (5.19)

5.2.2 Integrals of the Form
∫∞
−∞ f(x) dx

To evaluate the principal value of the integral

P.V.

∫ ∞
−∞

f(x) dx = lim
R→∞

∫ R

−R
f(x) dx (5.20)

We note that we can make a closed semicircular contour C by integrating along the real axis
from −R to R, and then counter-clockwise around the semicircle CR of radius R centered at
the origin. The integral of f(z) around this closed loop is

	
∫
C
f(z) dz = lim

R→∞

∫ R

−R
f(x) dx+

∫
CR
f(z) dz (5.21)

As we take the limit R→∞, we enclose the entire upper half-plane in the contour integral,
and we can evaluate the integral by calculating the residues at all of the poles in the upper
half plane. Then

P.V.

∫ ∞
−∞

f(x) dx =
∑
z0

Im(z0)>0

2πiRes(f(z), z0)− lim
R→∞

∫
CR
f(z) dz (5.22)
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So the contour integral gives us the principal value of the real integral as long as the integral
around the semicircle goes to zero as R→∞. That will happen, by the ML bound, as long
as the denominator of f(z) has two or more powers of z than the numerator.

For example, consider

P.V.

∫ ∞
−∞

1

x2 + 1
dx ; (5.23)

The function f(z) = 1
z2+1

= 1
(z+i)(z−i) has poles at z = i (which is in the upper half plane)

and z = −i (which is in the lower half plane). The residue at the pole at z = i is

Res

(
1

z2 + 1
, i

)
=

1

i+ i
=

1

2i
(5.24)

so if C is a semicircle of radius R > 1,

	
∫
C
f(z) dz = 2πi

(
1

2i

)
= π =

∫ R

−R
f(x) dx+

∫
CR
f(z) dz (5.25)

On CR,

|f(z)| = 1

R2 + 1
; (5.26)

since the length of CR is πR, that means∣∣∣∣∫
CR
f(z) dz

∣∣∣∣ ≤ πR

R2 + 1
(5.27)

which does indeed go to zero as R→∞, so the integral is

P.V.

∫ ∞
−∞

1

x2 + 1
dx = π (5.28)

(Of course, this integral is simple enough that we could have found the answer by trigonomet-
ric substitution, but the contour method lets us evaluate much more complicated integrals.)

The key thing to remember is that for the integral around the semicircle to vanish, you
have to have two more powers of x in the denominator than in the numerator. For instance,
the method doesn’t work for

P.V.

∫ ∞
−∞

x

x2 + 1
dx (5.29)

(which we’ve already seen is zero), because the integral around the semicircle doesn’t go to
zero in that case. (In this case the integral around the closed loop is πi, all of which comes
from the semicircle.)
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5.2.3 Integrals of the Form
∫∞
−∞ f(x) cosαx dx or

∫∞
−∞ f(x) sinαx dx

If the integrand is not just a rational function, but includes cosαx or sinαx, with α > 0 we
can use a very similar method to evaluate it. We can use the Euler formula

eiαx = cosαx+ i sinαx (5.30)

to write ∫ ∞
−∞

f(x)eiαx dx =

∫ ∞
−∞

f(x) cosαx dx+ i

∫ ∞
−∞

f(x) sinαx dx (5.31)

This sort of integral comes up all the time in Fourier analysis. Now,
∫∞
−∞ f(x)eiαx dx is an

integral of a complex integrand with respect to a real variable, so it has a complex result.
But the integrals

∫∞
−∞ f(x) cosαx dx and

∫∞
−∞ f(x) sinαx dx are integrals of real functions of

a real variable, so the results must be real. We can thus read off∫ ∞
−∞

f(x) cosαx dx = Re

∫ ∞
−∞

f(x)eiαx dx (5.32a)∫ ∞
−∞

f(x) sinαx dx = Im

∫ ∞
−∞

f(x)eiαx dx (5.32b)

We do the integral

	
∫
C
f(z)eiαz dz =

∫ ∞
−∞

f(x)eiαx dx+

∫
CR
f(z)eiαz dz (5.33)

as before by looking at the residues at the poles in the upper half-plane. But now the
conditions on f(z) are somewhat less stringent; it’s enough for the denominator to have one
more power of z than the numerator. It’s a somewhat subtle thing to show this, and it
actually has a name, Jordan’s lemma. We can’t just use the ML bound because while∣∣eiαz∣∣ =

∣∣eiαxe−αy∣∣ = e−αy ≤ 1 (5.34)

on the contour CR, the exponential suppression is enough to kill the integral over enough of
the contour. To give a concrete example,

lim
R→∞

∫
CR

z

z2 + 1
dz 6= 0 (5.35)

but

lim
R→∞

∫
CR

zeiαz

z2 + 1
dz = 0 (5.36)

We can use this technique to evaluate the Fourier integrals∫ ∞
−∞

x cos kx

x2 + a2
dx (5.37a)∫ ∞

−∞

x sin kx

x2 + a2
dx , (5.37b)
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where k and a are positive constants, as the real and imaginary parts of∫ ∞
−∞

xeikx

x2 + a2
dx (5.38)

The complex function
zeikz

z2 + a2
=

zeikz

(z − ia)(z + ia)
(5.39)

has poles at z = ia and z = −ia. The pole at z = ia has a residue of

zeikz

(z + ia)

∣∣∣∣
z=ia

=
iae−ka

2ia
=
e−ka

2
(5.40)

This means that

	
∫
C

zeikz

z2 + a2
dz = 2πi

(
e−ka

2

)
= πie−ka (5.41)

which means the Fourier integrals have the principal values∫ ∞
−∞

x cos kx

x2 + a2
dx = 0 (5.42a)∫ ∞

−∞

x sin kx

x2 + a2
dx = πe−ka (5.42b)

5.2.4 Indented Contours

The idea of a Cauchy principal value of an integral also applies to integrals which diverge at
some point on the real axis rather than at infinity. For example, consider∫ ∞

−∞

1

x(x2 + 1)
dx (5.43)

This integral does not converge because∫ 0

−∞

1

x(x2 + 1)
dx = lim

r→0+

∫ −r
−∞

1

x(x2 + 1)
dx (5.44)

and ∫ ∞
0

1

x(x2 + 1)
dx = lim

r→0+

∫ ∞
r

1

x(x2 + 1)
dx (5.45)

diverge logarithmically. But we can define the Cauchy principal value as

P.V.

∫ ∞
−∞

1

x(x2 + 1)
dx = lim

r→0+

(∫ −r
−∞

1

x(x2 + 1)
dx+

∫ ∞
r

1

x(x2 + 1)
dx

)
(5.46)

In general, if we have a function f(z) with a simple pole at z = c ∈ R, we can evaluate the
Cauchy principal value of its integral along the real axis with a modification of the standard
contour integration technique. Let C be a contour made up of four parts:
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• along the real line from −R to c− r

• a clockwise semicircle −Cr of radius R centered on the origin

• along the real line from c+ r to R

• a counter-clockwise semicircle CR of radius R centered on the origin

the integral around the closed contour C, which we can evaluate by evaluation of the residues
of f(z) in the upper half-plane, is

	
∫
C
f(z) dz = lim

r→0+
lim
R→∞

(∫ c−r

−R
f(x) dx+

∫
−Cr

f(z) dz +

∫ R

c+r

f(x) dx+

∫
CR
f(z) dz

)
= P.V.

∫ ∞
−∞

f(x) dx− lim
r→0+

∫
Cr
f(z) dz + lim

R→∞

∫
CR
f(z) dz

(5.47)

We know that the integral around CR will vanish in the limit R → ∞ if f(z) falls off fast
enough (either two more powers of z in the denominator, or one more power of z in the
denominator and eiαz with α in the numerator). The contribution from the integral around
Cr comes from the principal part of the Laurent series for f(z) centered at c. Since we’re
assuming f(z) has a simple pole, we can write the Laurent series as

f(z) =
a−1
z − c

+ g(z) (5.48)

where a−1 = Res(f(z), c) and g(z) is analytic in a neighborhood around z = c. It’s easy to
use the ML bound to show

lim
r→0+

∫
Cr
g(z) dz = 0 (5.49)

so

lim
r→0+

∫
Cr
f(z) dz = lim

r→0+

∫
Cr

a−1
z − c

dz (5.50)

If we parameterize
∫
Cr as

z = c+ reiθ (5.51)

θI = 0 (5.52)

θF = π (5.53)

so that
dz = ireiθ dθ (5.54)

we have∫
Cr

a−1
z − c

dz =

∫ π

0

a−1
reiθ

ireiθ dθ = ia−1

∫ π

0

dθ = iπa−1 = iπRes(f(z), c) (5.55)
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So that means that

P.V.

∫ ∞
−∞

f(x) dx = 	
∫
C
f(z) dz+ lim

r→0+

∫
Cr
f(z) dz = 2πi

∑
z0

Im(z0)>0

Res(f(z), z0) + πiRes(f(z), c)

(5.56)
This makes some intuitive sense; you pick up half of the residue of a pole on the real axis.
Note that this only works for simple poles, however.

Example: Find

P.V

∫ ∞
−∞

1

z4 − 1
dz (5.57)

The integrand
1

z4 − 1
=

1

(z + i)(z − i)(z + 1)(z − 1)
(5.58)

has poles at the four fourth roots of unity. The residues are

Res

(
1

z4 − 1
, 1

)
=

1

(1 + i)(1− i)(1 + 1)
=

1

(2)(2)
=

1

4
(5.59a)

Res

(
1

z4 − 1
, i

)
=

1

(i+ i)(i+ 1)(i− 1)
=

1

(2i)(−2)
= − 1

4i
(5.59b)

Res

(
1

z4 − 1
,−1

)
=

1

(−1 + i)(−1− i)(−1− 1)
=

1

(2)(−2)
= −1

4
(5.59c)

Res

(
1

z4 − 1
,−i
)

=
1

(−i− i)(−i+ 1)(−i− 1)
=

1

(−2i)(−2)
=

1

4i
(5.59d)

The contour integral picks up the residue at z = i and half of the residues at z = 1 and
z = −1, so

P.V

∫ ∞
−∞

1

z4 − 1
dz = πi

[
2 Res

(
1

z4 − 1
, i

)
+ Res

(
1

z4 − 1
,−1

)
+ Res

(
1

z4 − 1
, 1

)]
= −π

2
− iπ

4
+
iπ

4
= −π

2
(5.60)

Practice Problems

19.6.3, 19.6.5, 19.6.9, 19.6.11, 19.6.13, 19.6.21, 19.6.23, 19.6.29, 19.6.31
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