RIT Logo with Text
 
CCRG Logo
Unveiling hidden companions in post-AGB stars: 3D simulations of evolved star binaries
By Nordhaus, Jason
(Tuesday, August 1, 2017)

Abstract

The deaths of ordinary stars are marked by extraordinary transitions. For those with initial masses <8 M_sun, the geometry of the outflows rapidly change from the spherical dust-driven winds seen in the giant phases to the iconic HST images of asymmetric post-Asymptotic-Giant-Branch and planetary nebulae (PNe). Measurements of post-AGB/PN nebular kinematics suggest that most (if not all) of these systems likely possess close, hidden companions responsible for the breaking of symmetry and the extreme momenta/energy observed in the outflows. However, it is notoriously difficult to detect such companions as the dusty outflows make direct detection improbable and efficiently mask radial velocity signatures. To address this issue, we have selected four post-AGB/PN systems that have comprehensive multi-epoch, multi-wavelength archival data obtained over the past 10-15 years. For each system, we will perform fully-dynamical 3D binary simulations using the AMR code AstroBEAR. Our results will be compared to the broad-band SED, and multi-epoch proper motion and archival images to constrain properties of the companions responsible for the outflow kinematics. We have successfully demonstrated this technique in L2 Puppis (one of the nearest Mira-like systems), where we were able to fully match the multi-wavelength observational data for the system if an unseen planet were present. Since then, ALMA has tentatively detected such a planet in L2 Puppis.Lastly, this award will provide partial funding for a deaf graduate student. Professor Nordhaus is fluent in American Sign Language and working to increase opportunities for deaf and hard-of-hearing students in astronomy.

CCRG Authors

Nordhaus, Jason