Rochester Institute of Technology

Site-wide links

Graph
Accurate Evolutions of Orbiting Black-Hole Binaries without Excision
by
Published in Physical Review Letters 96, 111101 (Wednesday, March 22, 2006)

Abstract

We present a new algorithm for evolving orbiting black-hole binaries that does not require excision or a corotating shift. Our algorithm is based on a novel technique to handle the singular puncture conformal factor. This system, based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein’s equations, when used with a “precollapsed” initial lapse, is nonsingular at the start of the evolution and remains nonsingular and stable provided that a good choice is made for the gauge. As a test case, we use this technique to fully evolve orbiting black-hole binaries from near the innermost stable circular orbit regime. We show fourth-order convergence of waveforms and compute the radiated gravitational energy and angular momentum from the plunge. These results are in good agreement with those predicted by the Lazarus approach.