Abstract
Recent observations of the L2 Puppis system suggest that this Mira-like variable may be in the early stages of forming a bipolar planetary nebula (PN). As one of nearest and brightest AGB stars, thought be a binary, L2 Puppis serves as a benchmark object for studying the late-stages of stellar evolution. We perform global, three-dimensional, adaptive-mesh-refinement hydrodynamic simulations of the L2 Puppis system with AstroBEAR. We use the radiative transfer code RADMC-3D to construct the broad-band spectral-energy-distribution (SED) and synthetic observational images from our simulations. Given the reported binary parameters, we are able to reproduce the current observational data if a short pulse of dense material is released from the AGB star with a velocity sufficient to escape the primary but not the binary. Such a situation could result from a thermal pulse, be induced by a periastron passage of the secondary, or could be launched if the primary ingests a planet.