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1 Chi-Squared Tests with Known

Probabilities

1.1 Chi-Squared Testing

The next sort of inference we consider is known as categorical
data analysis. Consider an experiment with a set of k possible
discrete outcomes. If we do n independent repetitions of that
experiment, we find n1 that end in outcome #1, n2 that end
in outcome #2, up to nk ending in outcome #k, where each ni
is a non-negative integer, and n1 + n2 + · · · + nk = n. There
are k different categories into which each observation can fall,
and we count up the numbers of each. We have a model which
tells us the expected probabilities p1, p2, . . . , pk of the different
outcomes, where 0 ≤ pi ≤ 1 and p1 + p2 + · · · pk = 1. The
expected numbers of observations in each category according
to the model are np1, np2, . . . , npk. (Note that these will in
general not be integers.) If we consider this model to be the null
hypothesis, we’re interested in a test which rejects the model if
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the observed number counts in the categories are very different
from their expected values.

To see the test statistic, we take a slight diversion and recall
that if X1, . . . , Xk are independent random normal variables
such that X i ∼ N(µi, σ

2
i ), then

U =
k∑
i=1

(Xi − µi)2

σ2
i

=
k∑
i=1

Zi
2 (1.1)

is a chi-square random variable with k degrees of freedom, also
known as χ2(k). Similarly, one of the consequences of Student’s
theorem is that if {Xi} is a sample from N(µ, σ2)

V =
k∑
i=1

(Xi −X)2

σ2
∼ χ2(k − 1) (1.2)

as we saw when we considered confidence intervals for the pop-
ulation variance, if we have a statistic W ∼ χ2(ν),

P (W ≥ χ2
α,ν) = α (1.3)

so comparing the statistic value to χ2
α,ν gives a test at signifi-

cance level α of the original model.
To connect this to the categorical data analysis problem,

consider the k = 2 case, where there are two possible out-
comes. Then N1 ∼ Bin(n, p1) and N2 = n − N1. If np1 and
np2 = n(1 − p1) are both more than about 5, we can treat the
binomial random variable N1 as approximately N(np1, np1p2) so

W =
(N1 − np1)2

np1p2
(1.4)

Is approximately χ2(1)-distributed. If we use a little algebra,
specifically 1

p1p2
= 1

p1
+ 1

p2
and N1 − np1 = −(N2 − np2), we can

show

W =
(N1 − np1)2

np1
+

(N2 − np2)2

np2
(1.5)

which is a form of the chi-squared statistic (with k−1 = 1 degree
of freedom) which treats outcomes 1 and 2 on equal footing.

Now consider the case where k > 2. The random variables
N1, N2, . . . , Nk are not independent, but obey what’s called a
multinomial distribution, whose pmf (for every possible combi-
nation of non-negative integers with n1 + n2 + · · · + nk = n) is

p(n1, . . . , nk) =
n!

n1!n2! · · ·nk!
pn1
1 p

n2
2 · · · p

nk
k (1.6)

In fact, the last random variable Nk = n−N1−N2−· · ·−Nk−1

is redundant; all the information is carried in the first k − 1
variables. It turns out that, as long as all the expected number
counts {npi} (including npk) are at least 5, the statistic

W =
k∑
i=1

(Ni − npi)2

npi
(1.7)

written in analogy with (1.5) is a chi-squared random variable
with k − 1 degrees of freedom. So the statistic value (to be
compared to χ2

α,k−1) for a specific set of number counts is

k∑
i=1

(ni − npi)2

npi
=

∑ (observed− expected)2

expected
(1.8)

1.1.1 Example: Twins

Consider 50 sets of twins. If they are all fraternal, and boys
and girls are equally likely, we’d expect on average 12.5 boy-boy
pairs, 25 mixed pairs, and 12.5 girl-girl pairs.

boy-boy mixed girl-girl
obs 8 23 19
exp 12.5 25 12.5
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We can calculate

χ2 =
(8− 12.5)2

12.5
+

(23− 25)2

25
+

(19− 12.5)2

12.5
= 5.16 (1.9)

and note that χ2
.10,2 ≈ 4.605 while χ2

.05,2 ≈ 5.992 so this hypoth-
esis would be rejected at the 10% level but not the 5% level.

1.2 Chi-Squared Test for a Specified Distri-
bution

We can also apply the chi-squared test to a histogram of data
hypothesized to be a sample drawn from a specified distribution.
Then the number counts are the number of observations which
fall into each bin. For example, suppose we want to test the
hypothesis that a set of 80 observations is a sample from an
exponential distribution with rate parameter λ = ln 2. The cdf
is

F (x) = 1− e−x ln 2 = 1− 1

2x
(1.10)

so the expected number of observations lying between x1 and x2
is n

2x1
− n

2x2
. Suppose we divide into four bins, and obtain the

following observed and expected histogram.

x < 1 1 ≤ x < 2 2 ≤ x < 3 3 ≤ x
obs 40 21 14 5
exp 40 20 10 10

The chi-squared statistic will be

χ2 =
(40− 40)2

40
+

(21− 20)2

20
+

(14− 10)2

10
+

(5− 10)2

10

=
0

40
+

1

20
+

16

10
+

25

10
=

1 + 32 + 50

20
=

83

20
= 4.15

(1.11)

We can compare this to the percentiles of χ2(3) distribution.
Since χ2

.10,3 ≈ 6.251, we see that the P -value is greater than 10%,
and we would not reject this model at any reasonable confidence
level. Note that we could choose different bins than the ones
we did; in practice it’s good to choose the bins to have similar
numbers of expected observations.

Practice Problems

14.1, 14.3

Thursday 18 April 2019

2 Chi-Squared Tests with Estimated

Parameters

In both of the examples from last time, we assumed that the
expected numbers for each category were known, but that re-
quired an assumption in each case. Considering the problem
of twin distribution, we assumed that half of all children were
male, leading to expected numbers of

boy-boy mixed girl-girl
n/4 n/2 n/4

If the fraction of male children is θ, this becomes

boy-boy mixed girl-girl
nθ2 2nθ(1− θ) n(1− θ)2

we’ve replaced the fraction expected in category k, which was
previously a fixed number pi, with a function πi(θ). And in
principle, we can imagine that there would be not just one pa-
rameter θ, but a set of parameters θ ≡ {θ1, θ2, . . . , θm}, where
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m < k − 1. The chi-square statistic would then be

χ2(θ) =
k∑
i=1

[ni − nπi(θ)]2

nπi(θ)
(2.1)

To actually evaluate this for a test, we need to put in an estimate
θ̂ for the parameters. One choice would be to find the one which
minimizes χ2(θ) for the observed {ni}, but instead, we will use
the maximum likelihood estimate, i.e., the one which maximizes

f(n1, . . . , nk;θ) ∝ [π1(θ)]n1 [π2(θ)]n2 · · · [πk(θ)]nk (2.2)

or equivalently

ln f(n1, . . . , nk;θ) =
k∑
i=1

ni lnπi(θ) + ln
n!

n1! · · ·nk!
(2.3)

where the n1, . . . , nk we use are the actual observed values. For
example, in the twin example, the log-likelihood is

ln f(n1, . . . , nk; θ)

= 2n1 ln θ + n2[ln θ + ln(1− θ))] + 2n3 ln(1− θ) + const

= (2n1 + n2) ln θ + (n2 + 2n3) ln(1− θ) + const (2.4)

where the constant depends on n1, n2 and n3, but not θ. Differ-
entiating with respect to θ gives the maximum likelihood equa-
tion

2n1 + n2

θ̂
− n2 + 2n3

1− θ̂
= 0 (2.5)

which has the solution

θ̂ =
2n1 + n2

2n
=

16 + 23

100
= .39 (2.6)

We can plug that into the formulas for the expected numbers of
twins in each category (for n = 50) and get

boy-boy mixed girl-girl
obs 8 23 19
exp nθ2 2nθ(1− θ) n(1− θ)2
exp for θ = .39 7.605 23.790 18.605

The chi-squared is then

χ2 =
(8− 7.605)2

7.605
+

(23− 23.790)2

23.790
+

(19− 18.605)2

18.605
≈ .0551

(2.7)
However, since we’ve used the data to fit one parameter, the per-
centiles we should compare it to are not χ2(2) but χ2(2 − 1) =
χ2(1). In general, if we have k categories and m functionally in-
dependent parameters (meaning no one parameter can be com-
pletely determined from the other m− 1), the resulting statistic
will be approximately χ2(k − 1−m).

2.1 Chi-Squared for a Parametrized Distri-
bution

We can also return to the application where we apply the chi-
squared test to a binned histogram to check a hypothesized dis-
tribution. Last time we gave an example where we observed the
following number counts for a data sample of size n = 80:

x < 1 1 ≤ x < 2 2 ≤ x < 3 3 ≤ x
40 21 14 5

Last time we hypothesized an exponential distribution with λ =
ln 2, but suppose we allowed λ to be an unknown parameter.
Then the cdf of the distribution would be

F (x) = 1− e−λx (2.8)

and the expected number counts in the bins would be
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x < 1 1 ≤ x < 2 2 ≤ x < 3 3 ≤ x
n(1− e−λ) n(e−λ − e−2λ) n(e−2λ − e−3λ) ne−3λ

If we wanted to follow the maximum likelihood prescription from
the previous section, we would need to find the λ value which
maximizes

(1− e−λ)n1(e−λ − e−2λ)n2(e−2λ − e−3λ)n3(e−3λ)n4 (2.9)

This seems like a pretty complicated function, although it turns
out that it is maximized by setting λ to

λ̂ = ln
n1 + 2n2 + 3n3 + 3n4

n2 + 2n3 + 3n4

(2.10)

and the resulting statistic is approximately χ2(3)-distributed.
But in general it may be difficult and/or require a numerical
method to find the parameters θ̂ which maximize

k∑
i=1

ni ln[F (bi;θ)− F (ai;θ)] (2.11)

where the ith histogram bin covers ai < x ≤ bi, which is what
we’d need to get a statistic which was χ2 distributed with k −
1 − m degrees of freedom. Instead, it is often convenient to
use some other point estimate constructed not just from the
binned histogram, but from the full sample of n data values.
For instance, for the exponential model we could use λ = 1/x.
If we do this, though the χ2 value will generally not be as low as
if we had really minimized over θ. This means that the threshold
cα for a test with false alarm probability α will be between the
value χ2

α,k−1 we’d use if we had fixed the parameters arbitrarily
and the (lower) value χ2

α,k−1−m we’d use if we had minimized
the χ2 over the m parameters, i.e.,

χ2
α,k−1−m ≤ cα ≤ χ2

α,k−1 (2.12)

Practice Problems

14.15, 14.17

Tuesday 23 April 2019

3 Two-Way Contingency Tables

We now consider another categorical data analysis problem, in
which we have two sets of categories, and each observation falls
into one category from the first set and one from the second set.
We’d like to know if the data indicate any statistical relationship
between which of the first set of categories an observation falls
into and which of the second. For instance, suppose we survey
students majoring in four disciplines about their food choices:

Vegan Vegetarian Non-Veg Total
Math & Stat 9 23 49 81
Physics 6 15 30 51
Chemistry 12 28 62 102
Biology 25 50 98 173
Total 52 116 239 407

We’d like to know if the data indicate any significant tenden-
cies for students in one major to have one diet or another. There
are two ways to pose the question:

1. Is there any difference in the tendencies of students in
one major or another to have a vegan, vegetarian, or non-
vegetarian diet? (homogeneity)

2. Is there any correlation between the major chosen by a stu-
dent and their dietary choices? (independence)

The two questions have different interpretations in the frame-
work of classical statistics, but they turn out to lead to identical
data analysis procedures.
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As a matter of notation, we’ll consider the table to have I rows
and J columns, labelled by i = 1, 2, . . . , I and j = 1, 2, . . . , J ,
respectively. (In the table above, I is 4 and J is 3.) We’ll
call the observed number in each cell n(i, j). (Devore calls
this Nij.) We’ll write the total of the numbers in row i as

n(i, ·) =
∑J

j=1 n(i, j) (Devore: ni·) and in column j as n(·, j) =∑I
i=1 n(i, j) (Devore: n·j). The total number of observations is

n =
I∑
i=1

n(i, ·) =
I∑
i=1

J∑
j=1

n(i, j) =
J∑
j=1

n(·, j) (3.1)

3.1 Perspective 1: Test for homogeneity

In the first way of looking at things, the number n(i, ·) in each
row is a given, and for each i we consider {N(i, j)|j = 1, . . . J} to
be a multinomial random vector with probabilities p(j|i). (De-
vore calls this pij.) Note that this is not a conditional probability
according to the set theory definition of Devore Chapter Two,
but it’s the probability for an observation which is in row i to
fall into column j. These probabilities obey

∑J
j=1 p(j|i) = 1 for

each i. The most important property of the multinomial for us
is that

E (N(i, j)) = n(i, ·)p(j|i) (3.2)

The null hypothesis of homogeneity is that each of these I sets
of J probabilities is the same:

H0 : p(j|i) = p(·, j) for all I (3.3)

We can estimate this common probability as p̂(·, j) = n(·,j)
n

so
that the estimated expected number of items in each cell is

ê(i, j) = n(i, ·)p̂(·, j) =
n(i, ·)n(·, j)

n
(3.4)

We then use these estimated expected numbers to make a chi-
squared statistic for the whole table’s divergence from homo-
geneity:

χ2 =
I∑
i=1

J∑
j=1

[n(i, j)− ê(i, j)]2

ê(i, j)
(3.5)

We have I multinomial random variables with J categories each,
which means we’ve observed I(J − 1) independent numbers.
We’ve estimated J probabilities, but only J − 1 of them were
independent because they had to add to 1. Thus the number of
degrees of freedom for the chi-squared should be

I(J − 1)− (J − 1) = (I − 1)(J − 1) (3.6)

Note that although the formalism treats the rows and columns
rather differently, the final data analysis prescription treats them
symmetrically.

3.2 Perspective 2: Test for independence

In the second way of looking at things, the only thing we treat as
given is the total number of observations n, and the observation
{N(i, j)|i = 1, . . . I; j = 1, . . . J} is a (IJ-dimensional) multino-
mial random vector with probabilities p(i, j). (Devore also calls
this pij, which is one reason I wanted to make the notation more

descriptive.) These probabilities obey
∑I

i=1

∑J
j=1 p(i, j) = 1.

Now the multinomial says

E (N(i, j)) = np(i, j) (3.7)

The null hypothesis of independence is that the probabilities
can be decomposed assuming independence of the two sets of
categories:

H0 : p(i, j) = p(i, ·) p(·, j) (3.8)
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We can estimate the probabilties as p̂(i, ·) = n(i,·)
n

and p̂(·, j) =
n(·,j)
n

so that the estimated expected number of items in each cell
is

ê(i, j) = np̂(i, ·)p̂(·, j) = n
n(i, ·)n(·, j)

n2
=
n(i, ·)n(·, j)

n
(3.9)

which is exactly what we saw above1 We then make the chi-
squared as before:

χ2 =
I∑
i=1

J∑
j=1

[n(i, j)− ê(i, j)]2

ê(i, j)
(3.10)

We have a single multinomial with IJ categories now, so there
are IJ − 1 independent observations. We’ve estimated I prob-
abilities {p̂(i, ·), I − 1 of which are independent, and J prob-
abilities {p̂(·, j), J − 1 of which are independent, so we have

IJ−1−(I−1)−(J−1) = IJ−I−J+1 = (I−1)(J−1) (3.11)

which, again, is the same number of degrees of freedom as the
homogeneity test told us.

3.2.1 Example

We return to the example above. The estimates according to
the model are (81)(52)

407
≈ 10.35, (81)(116)

407
≈ 23.09, etc.:

1Note that viewed as a statistic, the estimate from independence is

ê(i, j) = N(i,·)N(·,j)
n while that from homogeneity is ê(i, j) = n(i,·)N(·,j)

n ,
but this distinction has no effect on the data analysis prescription.

Vegan Vegetarian Non-Veg Total
Math & Stat 10.35 23.09 47.57 81
Physics 6.52 14.54 29.95 51
Chemistry 13.03 29.07 59.90 102
Biology 22.10 49.31 101.59 173
Total 52 116 239 407

Note that it’s really easy to do this in a simple spreadsheet
program. If I construct the chi-squared statistic I get 0.99.
I need to compare this to a chi-squared distribution with
(4− 1)(3− 1) = (3)(2) = 6 degrees of freedom, so 0.99 is rather
low indeed and the data show no significant correlation.

Practice Problems

14.27, 14.34, 14.35, 14.41
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