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1 The ANOVA F -Test

We now consider a generalization of the two-sample problem,
where we now have multiple samples, each possibly from a dif-
ferent population. Following the notation of Devore, we will
call the number of samples I and label the individual samples
with i = 1, . . . , I. The size of sample i will be written Ji, and
we’ll label the individual observations in the ith sample with
j = 1, . . . , Ji, and write xij as the j observed value in the ith
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sample, and Xij as the corresponding random variable. Some-
times (e.g., in Section 10.1 of Devore) we’ll assume all the sam-
ples are of the same size, which we’ll call J , so that the to-
tal number of observations is IJ ; in general it is n =

∑I
i=1 Ji.

The different populations from which the samples are drawn are
sometimes called treatments, based on an experimental design
in which we have I treatments (e.g., medicines), each of which
is applied to J test subjects and the responses {xij} recorded.

We’ll consider the most basic test, in which the samples are
all assumed to come from normal populations with the same
variance σ2, i.e., Xij ∼ N(µi, σ

2). The null hypothesis H0 will
be that all of the populations are identical, µ1 = µ2 = . . . = µI ,
while the alternative hypothesis Ha is that at least one mean µi
is different from at least one of the others. An obvious starting
point for a statistic comparing the means of the I populations
is to construct the sample mean of each of the I samples, which
we write as

X i• =
1

Ji

Ji∑
j=1

Xij (1.1)

As with all sample means, we know E(X i•) = µi and V (X i•) =
σ2/Ji. Now, if we knew the common variance σ2 and had a
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hypothesized value µ for the common mean, we could use the
fact that

X i• − µ
σ/
√
Ji

(1.2)

is standard normal if H0 is true to construct a test statistic

I∑
i=1

(X i• − µ)2

σ2/Ji
=

∑I
i=1 Ji(X i• − µ)2

σ2
(1.3)

which, if H0 is true, should be a chi-squared random variable
with I degrees of freedom. If Ha is true, the statistic should have
larger than expected values because of the mismatch between
each µi and µ.

Of course, we don’t know µ or σ, so we have to estimate them
from the data, using the “grand mean”

X•• =
1

n

I∑
i=1

Ji∑
j=1

Xij =

∑I
i=1 JiX i•∑I
i=1 Ji

(1.4)

and corresponding variance

S2 =
1

n− 1

I∑
i=1

Ji∑
j=1

(Xij −X••)2 (1.5)

which would point towards a statistic something like∑I
i=1 Ji(X i• −X••)2

S2
=

∑I
i=1

∑Ji
j=1(X i• −X••)2

1
n−1

∑I
i=1

∑Ji
j=1(Xij −X••)2

(1.6)

The numerator and denominator look sort of similar, and have
interesting interpretations as two of three obvious measures of
variability of the data:

• The “total sum of squares” (SST)

SST =
I∑
i=1

Ji∑
j=1

(Xij −X••)2 (1.7)

measures the overall variability of the data set as a whole.

• The “treatment sum of squares” (SSTr)

SSTr =
I∑
i=1

Ji∑
j=1

(X i• −X••)2 (1.8)

measures the variability between samples (treatments).

• The “error sum of squares” (SSE)

SSE =
I∑
i=1

Ji∑
j=1

(Xij −X i•)
2 (1.9)

measures the variability within samples (treatments).

An important identity is

SST =
I∑
i=1

Ji∑
j=1

[(Xij −X i•)− (X i• −X••)]2

=
I∑
i=1

Ji∑
j=1

(Xij −X i•)
2 − 2

I∑
i=1

Ji∑
j=1

(Xij −X i•)(X i• −X••)

+
I∑
i=1

Ji∑
j=1

(X i• −X••)2 = SSE + SSTr (1.10)

where the cross term is zero because

Ji∑
j=1

(Xij −X i•) =

Ji∑
j=1

Xij − JiX i• = 0 (1.11)
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The test statistic we’ve been considering is thus

SSTr

(n− 1)SST
=

SSTr

(n− 1)(SSE + SSTr)
=

1

(n− 1)(1 + SSE/SSTr)
(1.12)

This means we can get an equivalent test by talking about
SSTr/SSE. If the means of the different populations are dif-
ferent, SSTr will be be bigger than expected, because the differ-
ent treatments (populations) will have more variability in their
estimated means. Both SSTr and SSE are, up to a scaling, chi-
squared random variables when H0 is true:

SSTr

σ2
=

I∑
i=1

(X i• −X••)2

σ2/Ji
∼ χ2(I − 1) (1.13)

and

SSE

σ2
=

I∑
i=1

Ji∑
j=1

(Xij −X i•)
2

σ2
∼ χ2(N − I) (1.14)

The number of degrees of freedom in SSTr is I−1 because we’ve
used one degree of freedom among the I means to construct the

grand mean X•• =
∑I

i=1 JiXi•∑I
i=1 Ji

. The numer of degrees of free-

dom in in SSE is n− I because we’ve used I degree of freedom
among the n observations to construct the I individual means
{X i•|i = 1, . . . , I}. It’s less obvious but still straightforward to
show that these two chi-squared random variables are indepen-
dent and therefore that

F =
SSTr/[(I − 1)��σ

2]

SSE/[(N − I)��σ
2]

=
MSTr

MSE
(1.15)

follows the F -distribution introduced in the last lecture, with
parameters ν1 = I − 1 and ν2 = n− I. (If all the samples have
the same size Ji = J , then n = IJ , so ν2 = IJ − I = I(J − 1).)

The testing procedure is then this: given the data, construct
the “mean square for treatments”

MSTr =
1

I − 1

I∑
i=1

Ji(X i• −X••)2 (1.16)

which is an estimate of the common variance σ2 if the means
{µi} are all the same and the “mean square for error”

MSE =
1

n− I

I∑
i=1

Ji∑
j=1

(Xij −X i•)
2 (1.17)

which is an estimate of σ2 using all the samples with no assump-
tion about the means. The ratio of these

f =
MSTr

MSE
(1.18)

is a test statistic which is F (I − 1, n − I) distributed if H0 is
true. We perform an upper-tailed test on this F statistic.

Because this test involves comparing two different estimates of
the variance, it is part of the field known as Analysis of Variance,
or ANOVA. Because there is only one set of populations in the
model, this is known as one-way ANOVA. Statistical software
typically outputs the various quantities into a table of the form

Source of Sum of Mean
Variation dof Squares Square f
Treatments I − 1 SSTr MSTr MSTr/MSE

Error n− I SSE MSE
Total n− 1 SST

Practice Problems

10.1, 10.3, 10.5, 10.9, 10.27
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Thursday 21 March 2019

Guest Lecturer: Dr. Joseph Voelkel; independent notes provided
for reference

Dr. Voelkel’s notes available at http://ccrg.

rit.edu/~whelan/courses/2019_1sp_MATH_252/

TukeyMultipleComparisons1up.pdf

2 Tukey’s Multiple-Comparisons

Test

If the ANOVA F -test rejects the null hypothesis, we can say
the if the data {xij} represent I random samples from nor-
mal distributions with the same variance, Xij ∼ N(µi, σ

2), the
data are inconsistent with all of the {µi} being equal. How-
ever, the test results don’t say anything about which {µi} are
different. To extract that information, an additional test is nec-
essary. For simplicity, we’ll limit attention to the case where
all of the samples are of the same size J . The obvious check
for the {µi} being different is to compare the treatment means
{xi•|i = 1, . . . , I} to each other, but how different do they have
to be to be significant? Each treatment mean, as a random vari-
able, is X i• ∼ N(µi, σ

2/J), so the scale is going be be set by
σ/
√
J , and our best estimate of σ2 is

MSE =
1

IJ − I

I∑
i=1

J∑
j=1

(Xij −X i•)
2 (2.1)

We have to be a bit careful, though, since the more treatments
there are, the more likely we are to have two of the sample means
differ just by chance. One approach is to set a simultaneous
confidence interval on all of the differences between the {µi}.

This is done by noting that

X i• − µi
σ/
√
J
∼ N(0, 1) (2.2)

and

(IJ − I)
MSE

σ2
∼ χ2(IJ − I) (2.3)

This means that the combination1

(X i• − µi)− (Xj• − µj)√
MSE/J

=
(X i• −Xj•)− (µi − µj)√

MSE/J
(2.4)

is the difference between two standard normal random variables
divided by the square root of a chi-squared random variable
which has been divided by its number of degrees of freedom. It
turns out, given the way these variables were constructed, they
are all independent random variables. There is a less well-known
probability distribution for this situation known as the Studen-
tized range distribution. If you have a sample of size m from a

standard normal distribution (i.e., with {Xi•−µi
σ/
√
J
} with m = I)

and an independent chi-squared random variable with ν degrees
of freedom ((IJ − I)MSE

σ2 with ν = IJ − I), the largest differ-
ence between all the possible pairs of standard normals, scaled
by the square root of the chi-squared per degree of freedom, is a
random variable which follows a studentized range distribution
with parameters m and ν. The probability density function of
this distribution isn’t even written down in closed form, but the
percentiles and tail probabilities are tabulated basically because
of Tukey’s test.2 Devore collects some of them in Table A.10
and refers to the 100× (1− α)th percentile as Qα,m,ν .

1Note that we’re now using j to label a different treatment, not an
observation within treatment i.

2They’re not in Python, but in R the cdf is ptukey() and the quantiles
are qtukey(). (R does not bother to define dtukey() for the distribution
function or rtukey() to generate random variables from the distribution.)
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So the probabilistic statement refers to the maximum differ-
ence between offsets between the sample and population mean
for each treatment, and can be written

1− α = P

(
max

i,j=1,...,I

(X i• −Xj•)− (µi − µj)√
MSE/J

≤Qα,I,IJ−I

)
(2.5)

If this is true of the maximum, it must be true for each of the
possible pairs of treatments, so:

1− α = P
(
∀i,j=1,...,IX i• −Xj• −Qα,I,IJ−I

√
MSE/J

≤µi − µj ≤X i• −Xj• +Qα,I,IJ−I
√

MSE/J
)

(2.6)

I.e., for each pair of treatments i and j, we can construct a
confidence interval of

xi• − xj• ±Qα,I,IJ−I
√

MSE/J (2.7)

and there is a probability 1 − α that this all of the intervals
will include the corresponding difference of means. So, for each
difference of means whose confidence interval does not include
zero, we declare that difference to be significant.

Practice Problems

10.xx, 10.xx, 10.xx
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