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1 Tests for Binomial Proportion

An important problem in inference is the modelling of a
binomial experiment, a series of independent identically-
distributed observations Xi which each have two possible out-
comes, labelled “success” (Xi = 1) and “failures” (Xi = 0).
The invididual observations are called Bernoulli trials, with
probability distribution P (Xi = 1) = p, P (Xi = 0) = 1 − p.
This is sometimes referred to as “sampling with replacement”
since it can be thought of as drawing an item from a population
in which a proportion p are in the “success” category, and then
putting the item back into the population so that the proportion
doesn’t change. In the limit of a large population, the opposite
situation of “sampling with replacement” can be approximated
as a binomial experiment, since the removal of up to n items
won’t change the population proportion much. You’ve probably
learned a bit about binomial experiments in basic statistics, but
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they’re often included in the field of nonparametric statistics
because the model requires minimal assumptions.

The test statistic Y =
∑n

i=1Xi is a binomial random variable
with n trials and probability p of success on each trial. It has a
discrete sampling distribution

p(y) =
n!

(n− y)!y!
py(1− p)n−y y = 0, 1, . . . , n (1.1)

Since the binomial distribution has E(Y ) = np and Var(Y ) =
np(1 − p) ≡ npq, for large n, when the Central Limit Theorem
kicks in, the statistic

Z =
Y − np√
np(1− p)

(1.2)

is approximately standard normal, which simplifies most of the
constructions.

1.1 Hypothesis Tests

There are three typical hypothesis tests for the proportion in a
binomial experiment, all based around a hypothesized null value
p∗ for the parameter p:

1. An upper-tailed test (one-tailed), where the null hypoth-
esis is H0: p = p∗ (or p ≤ p∗) and the alternative hypothesis
is H1: p > p∗.

2. A lower-tailed test (one-tailed), where the null hypothesis
is H0: p = p∗ (or p ≥ p∗) and the alternative hypothesis is
H1: p < p∗.

3. A two-tailed test, where the null hypothesis is H0: p = p∗

and the alternative hypothesis is H1: p 6= p∗.

1.1.1 Large Samples

When n is large (typically np∗ and n(1 − p∗) both more than
around 10, we can use the normal approximation and define the
test statistic

Z =
Y − np∗√
np∗(1− p∗)

(1.3)

which is standard normal if H0 is true. That means a test with
significance α can be obtained by rejecting H0 if Z > z1−α for
an upper-tailed test, if Z < −z1−α for a lower-tailed test, and
|Z| < z1−α/2 for a two-tailed test.

Similarly, the p-value for a one-tailed test is the probability
that a standard normal random variable will exceed the actual
observed value of z = y−np∗√

np∗(1−p∗)
:

P = P (Z ≥ z|p= p∗) = 1− Φ

(
y − np∗√
np∗(1− p∗)

)
(1.4)

and for a two-tailed test, it’s the probability that Z will be
farther from zero than z, i.e.,

P = P (|Z| ≥ |z| |p= p∗) = 1− 2Φ

(∣∣∣∣∣ y − np∗√
np∗(1− p∗)

∣∣∣∣∣
)

(1.5)

1.1.2 General One-Tailed

If the sample size is not large enough to use the normal approx-
imation, we just need to use an appropriate threshold on the
number of successes. For instance, if we define a test which re-
jects H0: p = p∗ in favor of H1: p > p∗ whenever y > k, this
test will have significance

α = P (Y >k|p=p∗) = 1−P (Y ≤k|p=p∗) = 1−B(k;n, p∗) (1.6)
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where B(y;n, p) is the cdf of the binomial distribution. Conover
tabulates this in Appendix Table A3, but we could also get it
from scipy.stats.binom.cdf() or equivalently 1−B(k;n, p∗)
from scipy.stats.binom.sf():

from __future__ import division

import numpy as np

from scipy import stats

n = 20

pstar = 0.2

mydist = stats.binom(n,pstar)

mydist.sf(10)

k = np.arange(n+1)

mydist.sf(k)

mydist.sf(6)

mydist.sf(7)

Note that this means it’s not possible to get a test with an
arbitrary significance α. For instance, if n = 20 and p∗ = 0.2,
a test which rejects H0 if y > 7 has α ≈ 0.032 and one which
rejects H0 if y > 6 has α ≈ 0.087, so we cannot find a test with
a significance of exactly 0.05.

For the P -value of an upper one-sided hypothesis test, we just
take

P = P (Y ≥ y|p= p∗) = 1−B(y − 1;n, p∗) (1.7)

Again, only certain specific P -values are possible.

1.1.3 General Two-Tailed

Things get interesting for two-tailed tests. Not only do we have
the discreteness of the binomial distribution, but it is also in
general asymmetric, which means we have to give some thought
to how much probability to put on each tail of the distribution.
For instance, suppose n = 20 and p∗ = 0.2. Then

bar(k,mydist.pmf(k),align='center');

xlim(-0.5,n+0.5)

xlabel(r'$y$');

ylabel(r'$b(y;%d,%.1f)$' % (n,pstar));

title('Binomial pmf');

gives us the pmf
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)

Binomial pmf

Conover somewhat unhelpfully tells us that if we want to devise
a test with confidence α, we should reject if y ≤ t1 or y > t2
where P (Y ≤ t1|p= p∗) = α1 and P (Y > t2|p= p∗) = α2, where
α1 and α2 are each “approximately half” of α, and then doesn’t
provide a small-n example. Let’s work through the details.

First, consider the problem of finding the two-tailed P -value
when y = 8. We can find that P (Y ≥ 8) = P (Y > 7.5) ≈ 0.0321
with
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mydist.sf(7.5)

You might näıvely think that the two-tailed P -value should be
twice this, but we’re asking for the null probability of Y having
a value at least as extreme as 8, which we can reasonably take
to mean a value which is no more likely than 8, i.e.,

P =
∑

p(y)≤p(8)

p(y) (1.8)

mypmf = mydist.pmf(k)

unlikely = mypmf <= mypmf[8]

print(unlikely)

k[unlikely]

mypmf[0]

mypmf[unlikely].sum()

So we see that the set of values at least as unlikely than 8 is
Y ≤ 0 or Y ≥ 8. But because P (Y ≤ 0) = 0.0116, the P -value
is 0.0437, which is less than twice the upper tail probability.
Fortunately, this behavior is exactly what’s coded in Python

stats.binom_test(8,n,pstar)

or R (as binom.test(8,20,0.2)).
To get a test with significance approximately 0.05, we just

need to look at the possible P -values. First we sort the possible
numbers of successes in decreasing order of null probability:

np.argsort(mydist.pmf(k))[::-1]

The next least probable value after 8 is 7:

unlikely7 = mypmf <= mypmf[7]

mypmf[unlikely7].sum()

The P -value for y = 7 is 0.0982. So for a test which rejects if
Y ≤ 0 or Y ≥ 8, the significance is 0.0437; for one which rejects
if Y ≤ 0 or Y ≥ 7, it is 0.0982.

1.2 Confidence Intervals

Rather than proposing some fixed proportion p∗ and defining
hypothesis tests or P -values, we can instead use the observed y
to construct a confidence interval on p. A confidence interval at
confidence level 1−α should be constructed in such a way as to
have a probability 1− α of containing the true value of p.

If the sample size n is large enough, we can define the point
estimate p̂ = y/n, which is a realization of the corresponding
statistic p̂ = Y /n, and note that the Central Limit Theorem
tells us the statistic p̂−p√

p(1−p)/n
is approximately standard nor-

mal. If we use this to construct a confidence interval, we end up
having to solve a quadratic equation for p and get a somewhat
complicated expression called the Wilson score interval which
you may have seen in Devore. But if n is large enough, you
can also assume that the statistic p̂−p√

p̂(1−p̂)/n
is standard normal

as well, and get an approximate confidence interval on p with
endpoints

p̂± z1−α/2

√
p̂(1− p̂)

n
(1.9)

in direct analogy with the usual normal confidence interval.

If n is not large, Conover basically punts and says to look
it up in the back of the book. But in fact there are several
different ways of defining small-n and intermediate-n confidence
intervals for binomial proportion.1 The one Conover uses is
called the Clopper-Pearson interval. It’s defined as the set of
all proportions p∗ such that

P (Y ≤ y|p= p∗) >
α

2
and P (Y ≥ y|p= p∗) >

α

2
(1.10)

1More information than you could possibly want is on the
relevant Wikipedia page https://en.wikipedia.org/wiki/Binomial_

proportion_confidence_interval
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This would be straightforward but laborious to work out experi-
mentally, and it would be understandable to fall back to looking
it up in the table. It turns out, though, that a bit of mathemat-
ical manipulatin allows one to express the endpoints in terms of
the percentiles of a beta distribution, so we can define a function
that computes it on the fly even though it’s not built in to scipy:

def ClopperPearsonCI(CL,n,x):

tailprob = 0.5*(1.-CL)

lower = stats.beta.ppf(tailprob,x,n-x+1)

upper = stats.beta.isf(tailprob,x+1,n-x)

return (lower,upper)

We can then test it with

CIlo, CIhi = ClopperPearsonCI(.95,20,8)

CIlo

CIhi

print(stats.binom(n,CIhi).cdf(8.5))

print(stats.binom(n,CIlo).sf(7.5))

As a final comment, note that the way we constructed this
confidence interval was somewhat different than the approach
used for the P -value, since we required equal tail probabilities.
An interesting exercise/challenge is to define a confidence in-
terval, given n and y, as all of the proportions for which the
P -value is greater than 0.05. You can then check the coverage
of this confidence interval for some true proportion p as in the
homework.

Tuesday 11 September August 2018
– Read Section 3.2 of Conover; refer to Chap-
ter 1 of Higgins

2 Inference About Population Quan-

tiles

We now consider the first of a couple of truly nonparametric
inferences which turn out to be mathematically equivalent to
the binomial test. Suppose we have a sample x1, . . .xn which
is drawn from an unspecified distribution. We wish to make a
statement about the p∗ quantile xp∗ , for a specified p∗, given the
data {xi}.

2.1 Hypothesis Tests

For a hypothesis test, we wish to evaluate the a hypothesis H0

which specifies some value x∗ for the p∗ quantile, H0: xp∗ = x∗.
As usual, the alternative hypothesis can be upper-tailed (H1:
xp∗ > x∗), lower-tailed (H1: xp∗ < x∗) or two-tailed (H1: xp∗ 6=
x∗).

If the sampling distribution is assumed to be a continuous
distribution f(x), so that there’s zero probability that X will be
exactly x∗, the statement xp∗ = x∗ is equivalent to

P (X ≤ x∗) = p∗ (2.1)

We can thus construct the test statistic T which is the number
of values in the random sample which are below x∗; under the
null hypothesis, this will be a binomial random variable with n
trials and probability of success p. We then apply the binomial
methods from last week. For instance, let’s take a random sam-
ple of size n = 40 and do a two-tailed test of the hypothesis that
the 60th percentile of the sampling distribution is 1.
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from __future__ import division

import numpy as np

from scipy import stats

n = 40

np.random.seed(1)

xi = stats.invgamma(2).rvs(size=n)

xi

p = 0.6

xpstar = 1.

teststat = np.sum(xi <= xpstar)

teststat

mu = n*p; mu

sigma = np.sqrt(n*p*(1-p)); sigma

z = (teststat-mu)/sigma; z

pvalz = 2*stats.norm.sf(z); pval

nulldist = stats.binom(n,p)

k = np.arange(n+1)

nullpmf = nulldist.pmf(k)

unlikely = (nullpmf <= nullpmf[teststat])

k[unlikely]

pval = np.sum(nullpmf[unlikely]); pval

For the one-sided case, things proceed in a relatively straight-
forward way, but one-tailed tests are in the opposite direction
for the binomial and quantile tests. E.g., if the alternative hy-
pothesis is xp∗ > x∗, that is equivalent to P (X ≤ x∗) < p∗.

If we consider the possiblity of a discrete sampling distribu-
tion, we have to worry about the possibility of one of the data
values equalling exactly x∗. That means there are two possibil-
ities for our “obvious” test statistic: T1 which is the number of
data values with xi ≤ x∗ and T2 is the number with xi < x∗.
Note that this means T1 ≥ T2

If we think about the null hypothesis H0: xp∗ = x∗ in light of

the definition of the quantile xp:

P (X < x∗) ≤ p∗ and P (X > x∗) ≤ 1− p∗ (2.2)

which can also be written

P (X ≤ x∗) ≥ p∗ and P (X < x∗) ≤ p∗ (2.3)

we see it’s actually a composite hypothesis. So large values of T1
(the number of values for which Xi≤x∗) are consistent with H0,
as are small values of T2 (the number of values for which Xi<x

∗).
So we need to reject H0 if t1 is too small or t2 is too large. In each
case, the null distribution will be Bin(n, p∗). It might seem odd
to have the same null distribution for two different statistics, but
this comes from the definition of significance for composite null
hypothesis, i.e., you take the form of the null hypothesis which
gives the highest false alarm probability, which in this case is
that each binomial probability is p∗.

n = 20

np.random.seed(1)

xi = stats.binom(4,0.4).rvs(size=n)

xi

p = 0.5

xpstar = 2

teststat1 = np.sum(xi <= xpstar); teststat1

teststat2 = np.sum(xi < xpstar); teststat2

stats.binom(n,p).sf(teststat2-0.5)

nulldist = stats.binom(n,p)

k = np.arange(n+1)

nullpmf = nulldist.pmf(k)

unlikely = (nullpmf <= nullpmf[teststat2])

np.sum(nullpmf[unlikely])

2.*stats.binom(n,p).sf(teststat2-0.5)
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For a one-sided test, e.g., H0: xp∗ = x∗ versus H1: xp∗ <
x∗, you use the appropriate test statistic for the appropriate
direction. So in this case H1 is

H1 : P (X < x∗) > p∗ (2.4)

and we want to reject H0 if t2 is too high.

Thursday 13 September August 2018
– Read Section 3.4 of Conover; refer to Section
3.4 of Hollander

2.2 Confidence Intervals

To consider a confidence interval on a population quantile, it’s
helpful to first think about a point estimator for that quantile.
For instance, an obvious estimator for the population median is
the sample median. Sample quantiles can also be described in
terms of order statistics. The kth order statistic of a sample
{Xi} is written X(k), and it’s simply the kth value in the sorted
list of the sample. So for a particular realization, if x1 = 1.3,
x2 = −2.1, x3 = 3.4, and x4 = 0.7, we have x(1) = −2.1,
x(2) = 0.7, x(3) = 1.3, and x(4) = 3.4. For a random sample,
each order statistic is a random variable which depends on the
whole sample.

The endpoints of a confidence interval on the quantile xp∗ will
be order statistics; we define a 1− α confidence interval by

P (X(r) ≤ xp∗ ≤X(s)) = 1− α (2.5)

We can choose the integers r and s by considering the meanings
of the inequalities X(r) ≤ xp∗ and xp∗ ≤ X(s). Assuming for
simplicity that we’re dealing with a continuous distribution, so
that P (X ≤ xp∗) = P (X ≤ xp∗) = p∗ for each point in the

sample, the statement X(r) ≤ xp∗ means that at least r of the
values in the sample are below xp∗ . On the other hand, xp∗≤X(s)

means that less than s of the points in the sample are below
xp∗ . So if Y is a Bin(n, p∗) random variable which refers to the
number of points in the sample below xp∗ , equation (2.5) can be
written

P (r ≤ Y < s) =
s−1∑
i=r

(
n

i

)
(p∗)i(1− p∗)n−i = 1− α (2.6)

So we find the r and s which satisfy this (using statistical ta-
bles or stats.binom.interval()), and then pick out the cor-
responding order statistics as the ends of the confidence in-
terval. As usual, if np∗ and n(1 − p∗) are large enough, we
can us the normal approximation, along with E(Y ) = np∗ and
Var(Y ) = np∗(1− p∗), and the continuity correction

P (r ≤ Y < s) = P

(
r − 1

2
≤ Y ≤ s− 1

2

)
= 1− α (2.7)

to write

r − 1

2
≈ np∗ − z1−α/2 (2.8a)

s− 1

2
≈ np∗ + z1−α/2 (2.8b)

(2.8c)

from __future__ import division

import numpy as np

from scipy import stats

n = 40

np.random.seed(1)

xi = stats.invgamma(2).rvs(size=n)

xi
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orderstats = np.sort(xi); orderstats

p = 0.6

alpha = 1. - 0.90

mydist = stats.binom(n,p)

r,sm1 = mydist.interval(1.-alpha)

r = int(r); r

s = int(sm1) + 1; s

mu = mydist.mean(); mu

sigma = mydist.std(); sigma

zcrit = stats.norm.isf(0.5*alpha); zcrit

rn = 0.5 + mu - zcrit * sigma; rn

sn = 0.5 + mu + zcrit * sigma; sn

(int(np.floor(rn)),int(np.ceil(sn)))

(r,s)

mydist.cdf(s-1) - mydist.cdf(r-1)

mydist.cdf(s-2) - mydist.cdf(r-1)

mydist.cdf(s-1) - mydist.cdf(r)

orderstats[r-1]

orderstats[s-1]

3 The Sign Test for Paired Data

Another test which uses binomial probabilities is the sign test,
one of the oldest (and crudest) hypothesis tests. The context is
paired data, which goes beyond the simplest sampling exper-
iment to suppose our data consist of n pairs of values (x1, y1),
(x2, y2), . . . , (xn, yn), drawn independently from the joint dis-
tribution f(x, y), This means the joint distribution for the full
data, seen as random vectors X,Y ≡ {Xi}, Yi}, is

f(x,y) = f(x1, y1)f(x2, y2) · · · f(xn, yn) (3.1)

The null hypothesis H0 is that the random variable X − Y is
drawn from a distribution with zero median, i.e., each Xi is as

likely to be larger than its associated Yi as smaller. A standard
parametric test for the difference in the means of X and Y
is the paired t-test, based on the sample mean 1

n

∑n
i=1(Xi −

Yi); if the distribution is symmetric–i.e., f(x, y) = f(µ1 − [x −
µ1], µ2−[y−µ2])–the (population) means will be the same as the
(population) medians. But even then, the test can be thrown
off by “outliers”; if there’s a small chance that one xi−yi is very
positive or very negative, it will dominate the test statistic. So
instead, the sign test basically tosses out all information about
the data except whether each xi is larger or smaller than its
corresponding yi. (This means the test is also useful when we
don’t have quantitative data about the size of the differences.)

If the original distribution is discrete, it’s also possible that
some of the differences will be neither positive nor negative, i.e.,
for some values of i it may turn out that xi = yi. So in principle
the data will include n+ pairs where xi > yi, n− pairs where
xi < yi, and n0 pairs where xi = yi. There are many different
approaches to how to handle these zero differences2 but for the
moment, we’ll focus on the simplest one, which is to ignore them
and only consider the data corresponding to non-zero differences.
That means we have n+ out of n± = n+ + n− pairs for which
the difference is positive. Under the null hypothesis (in which
the difference has zero median), the statistic N+ is, for a given
value of n±,3 a binomial Bin(n±,

1
2
) random variable, so we can

construct a binomial test to choose thresholds on n+. If n± is

2For a summary see Coakley and Heise, “Versions of the Sign Test
in the Presence of Ties”, Biometrics, 52 1242 (1996), available on cam-
pus as http://www.jstor.org/stable/2532840 and off campus as http:
//www.jstor.org.ezproxy.rit.edu/stable/2532840, and more recently
Bian, McAleer and Wong, “A trinomial test for paired data when there
are many ties”, Mathematics and Computers in Simulation, 81, 1153
(2011), Available on campus as http://dx.doi.org/10.1016/j.matcom.

2010.11.002 and off campus as http://dx.doi.org.ezproxy.rit.edu/

10.1016/j.matcom.2010.11.002
3In a broader sense, N± is also a random variable, which depends on
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large enough, we can use the normal approximation, using the
mean

E(N+|n±) =
n±

2
(3.2)

and standard deviation√
Var(N+|n±) =

√
n±

4
=

√
n±

2
(3.3)

Things are somewhat simplified by the fact that the assumed
probability is 1

2
. In particular, the sampling distribution for N+

is symmetric even if we are not in the large-sample regime, so
e.g., the two-sided p-value is just twice the corresponding one-
sided p-value.

In the numerical demo, we’ll read in data from the space-
separated file notes03_signtest.dat, available from http://

ccrg.rit.edu/~whelan/courses/2018_3fa_STAT_345/data/

from __future__ import division

import numpy as np

from scipy import stats

xi, yi = np.loadtxt('notes03_signtest.dat',unpack=True)

xi

yi

n = len(xi); n

jitx = stats.norm(scale=0.05).rvs(n)

jity = stats.norm(scale=0.05).rvs(n)

plot(xi+jitx,yi+jity,'k.')

xlim(0.5,6.5)

ylim(0.5,6.5)

plot([0.5,6.5],[0.5,6.5])

nplus = np.sum(xi>yi); nplus

nminus = np.sum(xi<yi); nminus

the number of ties N0, but we can consider all of the relevant probabilities
to be conditional upon the observed value n±.

npm = nplus + nminus; npm

stats.binom(npm,0.5).cdf(nplus)

stats.binom(npm,0.5).sf(npm-nplus-0.5)

mu = 0.5*npm; mu

sigma = 0.5*np.sqrt(npm); sigma

z = (nplus - mu)/sigma; z

stats.norm.cdf(z)
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