
Statistical Inference
(Conover Chapter Two)

STAT 345-01: Nonparametric Statistics ∗

Fall Semester 2018

Contents

0 Preliminaries 1
0.1 Administrata . . . . . . . . . . . . . . . . . . . . 1
0.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . 2
0.3 Perspective on Nonparametric Methods . . . . . . 2

1 Basics of Probability 3
1.1 Probability Distributions . . . . . . . . . . . . . . 3
1.2 Quantiles . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Median vs Mean . . . . . . . . . . . . . . 6
1.3 Using Software to “Look Up” Properties of Stan-

dard Distributions . . . . . . . . . . . . . . . . . 6

2 Statistical Inference 7
2.1 Random Samples . . . . . . . . . . . . . . . . . . 7
2.2 Confidence Intervals . . . . . . . . . . . . . . . . 8
2.3 Empirical Distributions . . . . . . . . . . . . . . . 9
2.4 Hypothesis Tests . . . . . . . . . . . . . . . . . . 9

2.4.1 Significance . . . . . . . . . . . . . . . . . 10
2.4.2 Power of a Test . . . . . . . . . . . . . . . 10
2.4.3 p-values . . . . . . . . . . . . . . . . . . . 12

2.5 One-Tailed and Two-Tailed Tests . . . . . . . . . 12

∗Copyright 2018, John T. Whelan, and all that

Tuesday 28 August 2018
– Read Chapter 1 of Conover; refer to Chapter
1 of Hollander

0 Preliminaries

0.1 Administrata

• Introductions!

• Syllabus

• Instructor’s name (Whelan) rhymes with “wailin’”.

• Text: Conover, Practical Nonparametric Statistics, 3rd edi-
tion.

• Recommended text: Hollander, Wolfe and Chicken, Non-
parametric Statistical Methods, 3rd edition.

• Other useful books:

– Higgins, Introduction to Modern Nonparametric
Statistics, 1st edition.

– Gibbons and Chakraborti, Nonparametric Statistical
Inference, 5th edition.

• Course website: http://ccrg.rit.edu/~whelan/STAT-345/

– Will contain links to notes and problem sets; course
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calendar is probably the most useful.

– Course calendar: tentative timetable for course.

• Course work:

– Please read the relevant sections of the textbook before
class so as to be prepared for class discussions.

– Conover has many short exercises, and the answers to
the odd numbered ones are in the book. You should
do as many of these as you can as you go along, to
check that you understand how things work.

– There will be quasi-weekly homeworks. Collaboration
is allowed an encouraged, but please turn in your own
work, as obviously identical homeworks may not re-
ceive credit.

– We’ll have a longer-term project towards the end of
the semester.

– There will be two prelim exams, in class, and one cu-
mulative final exam.

• Grading:

25% Problem Sets, Including Project

20% First Prelim Exam

20% Second Prelim Exam

35% Final Exam

You’ll get a separate grade on the “quality point” scale
(e.g., 3.1667–3.5 is the B+ range) for each of these five
components; course grade is weighted average.

0.2 Outline

1. Review/Basics of Probability and Statistical Inference
(Chapters One and Two)

2. Binomial Tests (Chapter Three)

3. Rank-Based Tests (Chapter Five)

4. Kolmagorov-Smirnov Statistics (Chapter Six)

5. Contingency Tables (Chapter Four)

0.3 Perspective on Nonparametric Methods

In your introductory statistics course (MATH-252 or STAT-
205), you learned about an array of statistical procedures for
estimating quantities and testing hypotheses. Many of them
were based on the properties of the normal distribution. They
probably seemed arbitrary at the time, but as you’ll learn if
you go on in statistics, you can often define so-called optimal
procedures which are known to outperform all the alterna-
tives if the underlying properties of the random data are known,
e.g., if you have a sample drawn from a specified distribution
with unknown parameters. On the other hand, in this course,
we’ll be concerned with methods which work reasonably well
even when you know little to nothing about the underlying dis-
tribution. To paraphrase former US Defense Secretary Donald
Rumsfeld, parametric statistical methods deal with “known un-
knowns” (unknown parameters in a known distribution), while
nonparametric methods are designed for “unknown unknowns”
(situations where you don’t even know the family of distribu-
tions you’re dealing with).

Note that “nonparametric” is often something of a misnomer;
if we’re trying to estimate some quantity, like the median of a
distribution, you could consider that to a parameter. A more
general term for the kind of methods we’ll look at is robust,
which means that while they may not be the most efficient under
ideal circumstances, they still perform well when simplifying
assumptions are violated.
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1 Basics of Probability

You should look over your notes from MATH-251 or STAT-205
on the details of probability theory; there is a brief review in
Chapter 1 of Conover.1 Very briefly, a probability P (A), where
0 ≤ P (A) ≤ 1 can be assigned to an event A. An event is, in
general, a statement which can be either true or false. In the
classical or frequentist formulation of probability, it must be
the random outcome of a repeatable experiment. If we repeat
the experiment N times, and NA is the number of times that
A turns out to be true, then NA/N should approach P (A) as
N becomes large, i.e., limN→∞

NA
N

= P (A). In the more gen-
eral Bayesian formulation of probability, A can refer to any
true-false proposition, and then P (A|I) represents a degree of
certainty, given the available information I, that A is true.

Events can be combined in various ways, but for our purposes
we’ll be interested in AB (also referred to as A ∩ B, A and B,
A∧B, or A,B), which is true if both A and B are true, and false
otherwise, and define P (AB) as the probability of this. We can
also define the conditional probability that A is true given the
assumption that B is true,

P (A|B) =
P (AB)

P (B)
(1.1)

We say that the events A and B are independent if P (AB) =
P (A)P (B), which implies that P (A|B) = P (A) and P (B|A) =
P (B).

1.1 Probability Distributions

A random variable is a quantity X whose value is not known,
but is described using probabilities. The most general way to

1My most recent analogous notes are at http://ccrg.rit.edu/

~whelan/1016-345/

talk about a random variable is via its cumulative distribution
function (cdf) (Conover calls this the “distribution function”)

F (x) = P (X ≤ x) (1.2)

A discrete random variable can only take on certain specific
values, so we can describe it using a probability mass function
(pmf) (Conover calls this a “probability function” and, confus-
ingly, uses the notation f(x))

p(x) = P (X = x) (1.3)

An example is the number of heads in three tosses of a fair coin,
which has a pmf2 that looks like this:

0 1 2 3

x

0.0

0.1

0.2

0.3

0.4

0.5

p
(x
)

pmf for # of heads on 3 fair coin tosses

and a cdf that looks like this:

2This is a binomial random variable with n = 3 trials and a probability
of p = 0.5. The general form of the pmf is p(x) = n!

(n−x)!x!p
x(1 − p)n−x,

x = 0, 1, . . . , n. We’ll be using this distribution a lot starting next week.
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cdf for # of heads on 3 fair coin tosses

At each of the possible values of the random variable, the cdf
F (x) jumps by an amount equal to the pmf p(x). If we want
the probability for a discrete random variable to lie between two
values a and b, we can add up all of the probabilities for values
in between the two

P (a≤X ≤ b) =
b∑

x=a

p(x) = F (b)− lim
ε→0

F (a− ε) (1.4)

On the other hand, a continuous random variable has a con-
tinuous cdf F (x) like this

0 π/2 π
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cdf for colatitude on sphere

Its derivative f(x) = F ′(x) is called the probability density func-
tion (pdf), like this

0 π/2 π
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pdf for colatitude on sphere
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The pdf can be used to define the probability that X lies in a
certain interval:

P (a<X<b) = P (a<X≤b) = F (b)−F (a) =

∫ b

a

f(x) dx (1.5)

A commonly used continuous distribution is the normal, aka
Gaussian, distribution

f(x) =
1

σ
√

2π
e−

(x−µ)2
2σ2 (1.6)

This distribution has parameters µ and σ. It’s an example of a
distribution family with a location parameter a = µ and a scale
parameter β = σ. In general, we can write such pdf as

f(x) =
1

b
h

(
x− a
b

)
(1.7)

where h(z) is some function that doesn’t involve a or b. Some
examples of these families are plotted below:

a− 4b a− 3b a− 2b a− b a a+ b a+ 2b a+ 3b a+ 4b

x
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0.4
b
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b

f
(x
)
=

h
(
x
−
a

b
)

Gaussian h(z) = e−z2/2
√

2π

Cauchy h(z) = 1
π(1+z2)

Laplace h(z) = e−|z
√

2|
√

2

Of course, distributions may have additional parameters which
influence them in more complicated ways, generally known as
shape parameters, for example the number of degrees of free-
dom ν in a Student-t distribution, which has a pdf of the form

h(z) ∝ 1(
1 + z2

ν

) ν+1
2

(1.8)

(We’ve omitted the form of the normalization constant, which is
not particularly enlightening.) When ν = 1 this is the Cauchy
distribution shown above, and when ν becomes large, it is close
to the normal distribution.

1.2 Quantiles

An important quantity associated with a probability distri-
bution is the quantile associated with a value p such that
0 ≤ p ≤ 1. The pth quantile of a distribution is the value xp
such that the corresponding random variable has a probability
p of lying below xp. Stated more precisely (which is important
for discrete distributions),

P (X < xp) ≤ p and P (X > xp) ≤ 1− p (1.9)

The 0.5 quantile is also known as the median or the 50th per-
centile. The 0.05 quantile is the 5th percentile, the 0.75 quantile
is the 75th percentile or the third quartile, etc.

Note that for a continuous random variable with pdf f(x), the
p quantile can be defined indirectly as∫ xp

−∞
f(x) dx = F (xp) = p (1.10)

5



1.2.1 Median vs Mean

The median is a measure of the location of a distribution. An-
other measure is the mean, or expectation value, which is the
average of the distribution, whose form depends on whether the
distribution is discrete or continuous:

µ = E [X] =

∫ ∞
−∞

x f(x) dx or
∑
x

x p(x) (1.11)

However, the median is sometimes a more useful generic prop-
erty than the mean. For example, for the Cauchy distribution,
the mean is not defined because the integral is the sum of two
infinite contributions, one positive and one negative:∫ ∞
−∞

x dx

π(1 + x2)
=

∫ 0

−∞

x dx

π(1 + x2)

∫ ∞
0

x dx

π(1 + x2)

= − lim
A→∞

ln(1 + A2)

2π
+ lim

B→∞

ln(1 +B2)

2π

(1.12)

On the other hand, the median is zero (or more generally the
location parameter a), since∫ 0

−∞

dx

π(1 + x2)
=

∫ ∞
0

dx

π(1 + x2)
=

1

2
(1.13)

Thursday 30 August 2018
– Read Sections 2.1-2.3 of Conover; refer to
Chapter 1 of Hollander

1.3 Using Software to “Look Up” Properties
of Standard Distributions

The appendices of statistics books are filled with tables of values
and probabilities for various distributions. This is rapidly be-
coming an anachronism, like trigonometry books before the ad-
vent of calculators which were full of tables of sines and cosines.

Now we have statistical software which can return all the de-
sired probabilities and percentiles for most standard distribu-
tions. The statistical computing language R of course has many
of these functions built in, but in this class I’ll show you some
of the corresponding tools available in Python thanks to the
scipy.stats package from Scientific Python. We can fire up
an interactive session with3 ipython --pylab and try a few
commands:

from __future__ import division

import numpy as np

from scipy import stats

stats.norm.cdf(1.)

stats.norm.sf(1.)

stats.norm.cdf(2.)

stats.norm.cdf(1.,scale=0.5)

stats.norm.cdf(0.5,scale=0.5)

stats.norm.cdf(1.3,scale=0.5,loc=0.3)

x = np.linspace(-5,5,100)

print(x)

Fx = stats.norm.cdf(x)

from matplotlib import pyplot as plt

plt.figure()

plt.plot(x,Fx)

plt.title(’Standard normal cdf’)

plt.savefig(’normalcdf.eps’,bbox_inches=’tight’)

plt.figure()

fx = stats.norm.pdf(x)

plt.plot(x,fx)

plt.title(’Standard normal pdf’)

3The --pylab imports a bunch of numpy and matplotlib functions into
the namespace; it has the same effect as from pylab import *, which is
kind of a crutch, and I prefer to actually access numpy functions explicitly.
It does make plotting work more smoothly.
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Documentation is available via https://docs.scipy.org/doc/

scipy/reference/stats.html . In a nutshell, I can get some-
thing like the cdf at x = 1.5 for the normal distribution with µ =
1 and σ = 2 with stats.norm.cdf(1.5,loc=1.,scale=2.) or
equivalently stats.norm(loc=1.,scale=2.).cdf(1.5). (I can
either specify the parameters of the distribution when I’m in-
voking it, or in the argument of the request for the cdf.) In place
of norm I can ask for other distributions like t, gamma, chi2, etc.
(See the documentation for the full list.) Instead of cdf(x) for
the cdf F (x), we could also use pdf(x) for the pdf f(x), sf(x)
for the “survival function” S(x) = 1−F (x) (this is useful if we’re
out on the tail so F (x) is close to 1), ppf(p) for the quantile xp,
isf(p) for the inverse survival function x1−p, and various other
possibilities. If you look up the documentation for a particular
distribution, you’ll get a list of the possible methods. As a bit of
jargon, the distribution in this construction is called an object
and the function you’re ultimately calling is a method on that
object.

2 Statistical Inference

2.1 Random Samples

A typical scenario4 in statistical inference involves a data set
x1, x2, . . . , xn ≡ {xi} ≡ x which is assumed to be a realization
of n independent random variables X1, X2, . . . , Xn ≡ {Xi} ≡
X all drawn from some distribution f(x). In the formalism of
probability theory, there is a joint distribution function

f(x1, x2, . . . , xn) = f(x1)f(x2) · · · f(xn) . (2.1)

4There are of course more complicated scenarios, like two random sam-
ples {Xi} and {Yj} from different distributions, but we’ll consider the sim-
ple case first for convenience.

the typical goal of statistical inference is to say something about
the distribution function f(x) based on the observed data {xi}.5
In conventional applications, this usually means constraining the
unknown values of parameters θ1, θ2, . . . , θp ≡ {θj} ≡ θ in the
distribution f(x;θ), such as the mean µ and/or standard devi-
ation σ in a normal distribution. Of course, in non-parametric
statistics, the information we’re interested in not typically pa-
rameter values but rather more general information about the
sampling distribution f(x), but it’s helpful to have a reminder
about the standard procedures.

If our uncertainty about the sampling distribution f(x; θ) can
be described by a parameter θ, the standard problem of para-
metric inference is to make a statement about the unknown value
θ given the actual observed data x ≡ x1, x2, . . . , xn. The diffi-
culty is that what we actually have a mathematical description
for is the probability distribution of the random vector X given
the value of θ: f(x; θ). This tells us about the probabilities as-
sociated with collecting additional data sets of the same sort as
x. Bayesian statistics gets around this by interpreting f(x; θ)
as a conditional probability distribution f(x|θ, I) (given a value
of θ and background information I, e.g., that the parameterized
model is the correct description in the first place) and using
Bayes’s Theorem to construct

f(θ|x, I) =
f(x|θ, I) f(θ|I)

f(x|I)
(2.2)

which is a posterior probability distribution describing our
knowledge of the parameter θ after we’ve collected the data x.

Classical frequentist methods instead construct a statistic
T (x) from the data, and describe the probability distribution

5When talking about the distribution f(x), it’s conventional to talk
about a random variable X with that distribution. Of course X1, X2, etc
all have this distribution, so statements about e.g., E [X] apply equally well
to E [X1], E [X2], etc.
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of the random variable T (X) for possible values of θ. Roughly
speaking, reasonable values of θ are those for which the value
T (x) is a “typical” value according to the behavior of the statis-
tic T (X).

2.2 Confidence Intervals

To give a concrete example, suppose f(x) is a distribution with
mean µ = E [X] and variance Var(X) ≡ E [(X − µ)2] = σ2. A
standard result from intro statistics says that if we construct the
sample mean

X =
X1 + · · ·+Xn

n
=

1

n

n∑
i=1

Xi (2.3)

and sample variance

S2 =
1

n− 1

n∑
i=1

(
Xi −X

)2
(2.4)

then the statistics have properties

E
[
X
]

= µ and Var(X) =
σ2

n
(2.5)

and
E
[
S2
]

= σ2 (2.6)

Note that X is known as an unbiased estimator of µ because
E
[
X
]

= µ, and likewise for S2 with σ2. We can use this to
construct statistics

Z =
X − µ√
σ2/n

(2.7)

and

T =
X − µ√
S2/n

(2.8)

Some important results from introductory statistics are that

1. When the underlying distribution f(x;µ, σ) is a Gaussian
(normal) N(µ.σ2) with the appropriate parameters, then
Z is a standard normal random variable N(0, 1), and T is
Student-t distributed with n− 1 degrees of freedom. (This
is part of Student’s Theorem.)

2. When the sample size is large enough, for any underlying
distribution, both Z and T are approximately normally dis-
tributed. (This is an application of the Central Limit The-
orem.) “Large enough” typically means n & 30 for Z and
n & 40 for T .

This can be used to construct a confidence interval for the pa-
rameter µ. For example, if n is large, the statistic T will have
a 5% chance of exceeding the 95th percentile of the standard
normal distribution6 z.95 ≈ 1.645. This means that

.05 ≈ P

(
X − µ√
S2/n

> z.95

)
= P

(
X − z.95

√
S2/n < µ

)
(2.9)

Likewise, it has a 5% chance of being less than the 5th percentile
z.05 ≈ −1.645. (Note that z.05 = −z.95 because the standard
normal pdf is symmetric about the origin.) So we have

.05 ≈ P

(
X − µ√
S2/n

< z.05

)
= P

(
µ <X − z.05

√
S2/n

)
(2.10)

This means that there is a 90% chance that the interval bounded
by X ± z.95

√
S2/n will contain the true mean value µ. We call

this a 90% confidence interval. Note that the random quan-
tity associated with the probability is not the unknown value
of µ (which is treated as fixed but unknown in the classical fre-
quentist formalism), but rather the endpoints of the confidence

6Note that this is the opposite of the notational convention in Devore,
where zα is the (1− α)× 100th percentile rather than the α× 100th.
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interval constructed from random data. Given an actual data
set {xi}, we construct the confidence interval as x± z.95s/

√
n.

One thing to note is that the central limit theorem means
that the confidence interval construction is correct even if the
sampling distribution is not Gaussian, as long as it has a finite
mean µ and variance σ. However, it may not be the narrowest
confidence interval we could construct at that confidence level,
if the underlying distribution is non-Gaussian.

2.3 Empirical Distributions

One piece of standard descriptive statistics that can actually be
considered as a form of nonparametric inference is the histogram,
which can be thought of as an approximation to either the pdf
f(x) or the pmf p(x), depending on the sort of random variable
we’re dealing with.

from __future__ import division

import numpy as np

from scipy import stats

mydist = stats.gamma(3,scale=10)

x_i = mydist.rvs(size=20)

hist(x_i,color=’w’,edgecolor=’k’,normed=True)

x = np.linspace(0.,90.,1000)

plot(x,mydist.pdf(x))

One obvious issue with this is the arbitrariness in binning the
histogram. A way around that is to estimate the cdf F (x) =
P (X ≤ x) rather than the pdf or pmf. The empirical distribu-
tion function F̂ (x; {xi}) (which Conover calls S(x)) is just the
fraction of observations {xi} that are less than or equal to x.
This can be easily estimated by using NumPy’s Boolean array
construction; A<=B is an array containing True wherever the in-
equalities is satisfied, and False wherever it’s not. If we take
the mean of this array, it gives the fraction of true values.

mymask = x_i[None,:] <= x[:,None]

mymask

mymask.shape

Phat = np.mean(mymask,axis=-1)

figure()

plot(x,Phat)

plot(x,mydist.cdf(x))

Conover considers a more involved method of estimating the
survival function 1 − F (x) in cases where some of the data are
missing, known as the Kaplan-Meier estimator, but we’ll skip
over that as it’s a bit advanced for our purposes right now.

Tuesday 4 September 2018
– Read Sections 2.4-2.5 of Conover; refer to
Chapter 1 of Hollander

2.4 Hypothesis Tests

Last week we considered confidence intervals, which are a form
of parameter estimation. Another major sort of statistical in-
ference, and one which can be easily extended to nonparamet-
ric scenarios, is hypothesis testing. Given a set of data
x ≡ x1, . . . , xn ≡ {xi}, we wish to distinguish between two
competing statements about the probability distribution f(x)
describing the random vector X of which x is supposed to be
an instance. We call them the null hypothesis H0 and the
alternative hypothesis H1. In a Bayesian approach we would
make some comparison between posterior probabilities P (H0|x)
and P (H1|x), but in the classical formulation we have to make
some indirect statement involving the possible probability dis-
tributions for X.

Classical hypothesis testing treats the two hypotheses differ-
ently. The null hypothesis H0 tends to describe the absence of
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some effect which is present in H1. A hypothesis test is a rule
for choosing between two alternatives given the observed data
x, but it’s not as simple as “pick H0” or “pick H1”. Rather, the
two possibilities are

1. Reject H0 (in favor of H1).

2. Don’t reject H0.

At no point do we actually accept either hypothesis. And in
particular, a negative test result doesn’t mean we rule out the
effect described by H1; it might be that the data just don’t con-
tain enough information to see it. As a matter of terminology,
the set of all points in the n-dimension “sample space” (whose
coordinates are (x1, . . . , xn)) for which the test says to reject H0

is known as the critical region or rejection region.
To give a concrete example, consider a sample of size n drawn

from some distribution with a finite mean µ and variance σ. Let
H0 specify that µ = 0 and H1 that µ > 0. We define a test that
rejects H0 if

z =
x

σ/
√
n
> 1.645 (2.11)

(where x is the sample mean of the data and we assume both
hypotheses specify the value σ of the population standard devia-
tion) and fails to reject if z ≤ 1.645. The value z is a realization
of the random variable

Z =
X

σ/
√
n

(2.12)

which is known as a test statistic.

2.4.1 Significance

If there were no uncertainty or randomness, the outcome of a
hypothesis test would be definitive. If H1 were true, the test

would reject H0, and if H0 were true, the test would not reject
it. But of course, there is a chance that the test will give the
“wrong” answer. Rejecting H0 if it’s true is known as a Type I
Error or a false alarm. Not rejecting H0 if H1 is true is known
as a Type II Error or a false dismissal.

The probability of a false alarm occurring is written α and
known as the significance of the test. If H0 uniquely deter-
mines a sampling distribution P (x|H0), it is known as a point
hypothesis and we can just write the probability that the data
will end up in the critical region, assuming H0 is true. For in-
stance, in the example considered above, if n is large, the Cen-
tral Limit Theorem tells us that the test statistic Z is a standard
normal random variable, and therefore

α = P (Z > 1.645|µ= 0) ≈ P (Z > z.95|µ= 0) ≈ 0.05 (2.13)

We say that the test has significance α = 5%. (Note this name is
somewhat misleading, since rejecting H0 with test with a smaller
α level, would actually be a more significant result.) If the
null hypothesis H0 does not completely specify the sampling
distribution (e.g., if we had chosen µ ≤ 0 rather than µ = 0)
it is known as a composite hypothesis, and α is defined to
be the maximum of all the false alarm probabilities associated
with the different distributions allowed by H0. (In this case that
would turn out to be when µ = 0 anyway, so the significance
would still be 5%.)

2.4.2 Power of a Test

The probability of a type II error (false dismissal) occurring,
i.e., failing to reject the null hypothesis H0 when the alternative
hypothesis H1 is true, is written β. The probability of rejecting
H0 when H1 is true is called the power of the test, γ = 1− β.
Since the alternative hypothesis is often a composite hypothesis,
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the power of a test can depend on the value of any parameters
that are not completely specified by H1. We can talk about a
power curve γ(θ) where θ is the parameter in question.

For example, in the test above based on the sample mean, the
Central Limit Theorem still tells us that

X − µ
s/
√
n

= Z − µ

σ/
√
n

(2.14)

is standard-normal distributed whatever the value of µ, which
means Z is normally distributed with unit variance but nonzero
mean

E(Z) =
µ

σ/
√
n

(2.15)

which means the power curve is

γ(µ) = P (Z > 1.645|µ) = 1− Φ

(
1.645− µ

σ/
√
n

)
(2.16)

We can plot this using ipython --pylab:

from __future__ import division

import numpy as np

from scipy import stats

muscaled = np.linspace(0,5,1000)

power = stats.norm.sf(1.645-muscaled)

plot(muscaled,power)

title(r’Power for one-sided $z$ test with $\alpha=0.05$’)

xlabel(r’$\frac{\mu}{\sigma/\sqrt{n}}$’)

ylabel(r’$\gamma(\mu)$’)

xlim(0,5)

ylim(0,1)

grid(True)

savefig(’notes02_normpower.eps’,bbox_inches=’tight’)
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Power for one-sided z test with α=0.05

One thing to note is that the power γ(µ) goes to 0.05 (which is
the significance α) as µ goes to 0 (which is the value specified by
H0). Also, γ(µ) > α for all µ > 0. This is a generally desirable
property (the test should be more likely to reject H0 when it’s
false than when it’s true), and so it has a name. In general,
an unbiased test is one for which γ ≥ α for all possible point
hypotheses contained within H1.

Note that it quickly becomes impractical to calculate power
curves analytically. Even in our example, if we’d used the statis-
tic

T =
X√
S2/n

(2.17)

constructed from the sample standard deviation s rather than
the population standard deviation σ (which we might not know),
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it’s not immediately obvious what to write down for the distri-
bution of T when

T − µ√
S2/n

(2.18)

is approximately standard-normal distributed. We’ll try to ad-
dress these questions numerically whenever possible.

2.4.3 p-values

While these discussions of predefined tests with significance lev-
els, rejection regions and power curves are easy to talk about
in the abstract, they end up not providing so much information
about an actual data set. Given such a test, the only result
we have for an actual observed sample is “reject H0” or “don’t
reject H0”. It is often more useful to consider how strongly H0

can be rejected for a given observed sample {xi}. This is the p-
value, which is defined as the smallest significance level at which
the null hypothesis would be rejected. It is also the probabil-
ity, assuming the null hypothesis to be true, that a new sample
drawn according to the same procedure, would give a test statis-
tic at least as extreme as the one seen from the original data.
(We can then also turn things around and say that a test with
significance α tells us to calculate the p value, and reject H0 if
p ≤ α.)

Going back to our z-test example, we can compare H0: µ = 0
to H1: µ > 0 by calculating z = x

σ/
√
n

and defining the p-value
as

p = 1− Φ(z) (2.19)

2.5 One-Tailed and Two-Tailed Tests

The example considered in detail so far included a one-sided
alternative hypothesis H1: µ > 0, and so we rejected H0: µ = 0

if the value of z (and thus the value of x) was too large (a one-
tailed test). But we could also consider a two-sided alternative
hypothesis H1: µ 6= 0 and reject H0 if z is too large or too
small. That’s what’s meant by “more extreme” in the p-value
definition above. So for example, we could define a rejection
region that says to reject H0 if z > 1.96 ≈ z.975 or z < −1.96.
This test will again have α = .05. And if we instead want a p
value from data giving us a statistic z, we’d have to ask for the
probability that a standard normal random variable would be
at least that far from 0:

p = Φ(− |z|) + [1− Φ(|z|)] (2.20)
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