
ASTP 611-01: Statistical Methods for Astrophysics

Problem Set 7

Assigned 2017 October 19
Due 2017 October 31

Show your work on all problems! Be sure to give credit to any collaborators, or
outside sources used in solving the problems. Note that if using an outside source to do
a calculation, you should use it as a reference for the method, and actually carry out the
calculation yourself; it’s not sufficient to quote the results of a calculation contained in an
outside source.

1 Least Squares and Chi-Squared

Consider measurements {xi} taken at times {ti} = {−1, 0, 1, 2}. We wish to fit these mea-
surements with a straight-line model with predicted expectation values µi = λ1 + λ2ti. The
model predicts measurments which differ from µi by uncorrelated Gaussian errors with stan-
dard deviations {σi} = {

√
2, 1,
√

2,
√

3}.
a) Find the matrix A describing the linear relationship µ = Aλ, i.e.,

µ1

µ2

µ3

µ4

 = A

(
λ1
λ2

)
(1.1)

b) Since the errors are uncorrelated, the standard deviations are described by a matrix

σ =


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

 . (1.2)

Construct the matrix ATσ−2A and find its inverse
[
ATσ−2A

]−1
. (Since it is a 2× 2

matrix, you should actually be able to invert it by hand.)

c) In class we showed that if the measured values are x, the maximum likelihood estimates

of the parameters will be λ̂(x) =
[
ATσ−2A

]−1
ATσ−2x. Work out the elements of the

matrix appearing for this problem in

(
λ̂1
λ̂2

)
=
[
ATσ−2A

]−1
ATσ−2


x1
x2
x3
x4

 (1.3)
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d) Suppose we measure {xi} = {1.07241020, 0.40438919, 2.89906726, 8.98526374}. Calcu-
late, to three significant figures,

i) The best-fit parameters λ̂1 and λ̂2

ii) The χ2 value relating the data to the best-fit model,

χ2 = (x−Aλ̂)Tσ−2(x−Aλ̂) (1.4)

iii) The p value, i.e., probability that data generated according to the model would
have a χ2 equal to or higher than the one observed.

2 Student t-distribution from a Bayesian perspective

Consider a random sample of size n drawn from a Gaussian distrition with mean µ and
variance σ2. The joint pdf is

f({xi}|µ, σ, I) = (σ
√

2π)−n exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)
(2.1)

In this problem, we will show that, given certain assumptions about the prior probability
distribution f(µ, σ|I), the marginalized posterior f(µ|{xi}, I) =

∫∞
0
f(µ, σ|{xi}, I) dσ obeys

a Student’s t-distribution.

a) One sensible prior distribution is a pdf uniform in µ and lnσ, which would have the
form

f(µ, σ|I) ∝ σ−1 −∞ < µ <∞; 0 < σ <∞ (2.2)

In principle, we should actually restrict the ranges of µ and σ to finite intervals like
−A < µ < B and C−1 < σ < D, so that the normalization constant implied by the
“∝” above would be finite, but in practice the results we’d get in the limit that A,
B, C, and D all went to infinity would be the same as we’ll get here by assuming the
simpler form above and sweeping the normalization constants under the rug. With
that in mind, use Bayes’s theorem to write an expression for f(µ, σ|{xi}, I) of the form

f(µ, σ|{xi}, I) ∝ g(µ, σ; {xi}) (2.3)

You may collect any factors independent of µ and σ into the implied proportionality
constant. This includes expressions like f({xi}|I). At the end of the day, we won’t
need them because normalization requires

f(µ, σ|{xi}, I) =
g(µ, σ; {xi})∫∞

0

∫∞
−∞ g(µ′, σ′; {xi}) dµ′ dσ′

(2.4)

You may also find it convenient for future calculations to use the abbreviation

Q =
n∑

i=1

(xi − µ)2 (2.5)
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b) Calculate, up to a proportionality constant, the marginalized pdf

f(µ|{xi}, I) =

∫ ∞
0

f(µ, σ|{xi}, I) dσ (2.6)

You may find it useful to make the change of variables τ = Q1/2/σ to do the integral.
You may also once again collect any factors in the result independent of µ (and Q,
which depends on µ), into an implied proportionality constant. This includes any
integrals which do not contain any functions of µ or Q (e.g., because they’ve been
factored out).

c) Show that

Q =
n∑

i=1

(xi − µ)2 = n(x− µ)2 + (n− 1)s2 (2.7)

where x = 1
n

∑n
i=1 xi is the sample mean and s2 = 1

n−1
∑n

i=1(xi − x)2.

d) By making the substitution (2.7) show that

f(µ|{xi}, I) ∝
(

1 +
n

n− 1

(x− µ)2

s2

)−n/2
(2.8)

i.e., that t = (x − µ)/
√
s2/n satisfies a Student t distribution with n − 1 degrees of

freedom,

f(t|{xi}, I) ∝
(

1 +
t2

n− 1

)−n/2
(2.9)

3 Chi-Squared from Multinomial Distribution

Carry out the following steps to demonstrate that if X =

X1
...
Xk

 is a multinomial random

vector with n trials, probabilities p1, . . . , pk where
∑k

i=1 pi = 1, and all of the {npi} are large
enough that we can approximate X as a multivariate normal random vector with the same

mean and variance-covariance matrix, then the statistic Q =
∑k

i=1
(Xi−npi)2

npi
approximately

obeys a χ2(k − 1) distribution.

a) As a warmup, consider the case k = 2, a binomial distribution. In this case, X1 ∼
Bin(n, p1) and X2 = n−X1. We know that E [X1] = np1 and Var(X1) = np1(1−p1) =
np1p2 where we have defined p2 = 1 − p1 in analogy to the multinomial distribution.
If n is large enough that np1 and np2 are not too small, we can approximate the
distribution of X1 as a Gaussian distribution with mean np1 and variance np1p2. We
can thus make an approximately χ2(1)-distributed random variable

Q =
(X1 − np1)2

np1p2
(3.1)
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i) Show that this statistic can also be written

Q =
(X1 − np1)2

np1
+

(X2 − np2)2

np2
(3.2)

(hint: show |X1 − np1| = |X2 − np2|)
ii) Calculate the covariance Cov(X1, X2) and thus the variance-covariance matrix

Cov(X).

b) Now consider a multinomial distribution which has joint pmf

p(x1, x2, . . . , xk) =


n!

x1!x2!···xn!
px1
1 p

x2
2 · · · p

xk
k

x1 = 0, 1, 2, · · · , n; x2 = 0, 1, 2, · · · , n− x1;
xk−1 = 0, 1, 2, · · · , n− x1 − x2 − · · · − xk−2;
xk = n− x1 − x2 − · · · − xk−1

0 otherwise

(3.3)
and joint mgf for all k multinomial random variables is MX(t1, . . . , tk) = (p1 e

t1 + · · ·+
pk e

tk)n.

i) Use the mgf to find the mean µ = E [X] and variance-covariance matrix σ2 =
Cov(X). (The latter can be found by calculating a typical diagonal element like
Var(X1) and a typical off-diagonal element Cov(X1, X2) and generalizing.)

ii) Assume that we can treat X approximately as a Nk(µ,σ2) multivariate nor-

mal random vector. Define a random vector Y =


X1−np1√

np1
...

Xk−npk√
npk

, and by writing

Y = AX + b, show that Y can be treated approximately as a Nk(0,1 − wwT)

multivariate normal random vector, where w =


√
p1
...√
pk


iii) Show that wTw = 1 and use this to show that 1 −wwT is a projector onto the

k− 1 dimensional subspace perpendicular to w. Use this to show that, analogous
to the proof of point 2 of Student’s theorem given in the lecture notes, Q = YTY
can be treated approximately as a χ2(k − 1) random variable.
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