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0 Preliminaries

0.1 Outline

• Part Zero: Fourier Analysis (Gregory Appendix B; Nu-
merical Recipes, Chapters 12-13, Arfken, Weber & Harris,
Chapter 20)

1. Continuous and discrete Fourier transforms

2. Spectral analysis of random data

• Part One: Probability Theory (Gregory Chapters 1, 2, 5)

1. Fundamentals of probability theory (Bayesian and Fre-
quentist interpretations) (Gregory Ch 1 & 2)

2. Definitions and applications of probability distribu-
tions. (Gregory Ch 5)

3. Specific probability distributions (Gregory Ch 5)
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4. Gaussian approximation to probability distributions
(including multivariate Gaussian and the Fisher ma-
trix) (Gregory Ch 5; Sivia Ch)

5. Sums of random variables and the central limit theo-
rem (Gregory Ch 5)

• Part Two: Statistical Inference (Gregory Chapters 3, 6,
7)

1. Model selection, hypothesis testing, and parameter es-
timation: overview. Philosophy in the frequentist and
Bayesian interpretations (Gregory Ch 6 & 7)

2. Frequentist inference (chi-squared, confidence inter-
vals, upper limits, composite hypotheses) (Gregory Ch
6 & 7)

3. Bayesian inference (Bayes factor, plausible intervals,
marginalization; connection between Bayesian and fre-
quentist results) (Gregory Ch 3; Sivia Ch 2, 3 & 4)

1 Fourier Analysis

See Gregory, Appendix B, Numerical Recipes, Chapters 12-13,
or Arfken, Weber & Harris, Chapter 20

1.1 Continuous Fourier Transform

You should be familiar1 with the Fourier series for a function
h(t) defined on an interval

− T

2
≤ t ≤ T

2
(1.1)

1If you are unfamiliar, or a little rusty, with this, you should work
through the exercises on Fourier series

namely2

h(t) =
∞∑

n=−∞

cn exp

(
i2πnt

T

)
(1.2)

where the Fourier coëfficients are given by

cn =
1

T

∫ T/2

−T/2
h(t) exp

(
−i2πnt

T

)
dt (1.3)

Note that if we write

fn =
n

T
= n δf (1.4)

so that

h(t) =
∞∑

n=−∞

cn e
i2πfnt (1.5)

the frequencies are spaced closer together for larger T . If we
write

h(t) =
∞∑

n=−∞

Tcn︸︷︷︸
h̃(fn)

ei2πfnt δf (1.6)

and take the limit as T → ∞ so that the sum becomes an
integral, we get

h(t) =

∫ ∞
−∞

h̃(f) ei2πft df (1.7)

and the inverse

h̃(fn) = Tcn =

∫ T/2

−T/2
h(t) e−i2πfnt dt (1.8)

2We’ll be working almost exclusively with Fourier analysis based on
complex exponentials; to relate this to trigonometric Fourier analysis, you
can use the Euler relation eiθ = cos θ + i sin θ and the related equations
e−iθ = cos θ − i sin θ, cos θ = (eiθ + e−iθ)/2, and sin θ = (eiθ − e−iθ)/(2i).
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becomes

h̃(f) =

∫ ∞
−∞

h(t) e−i2πft dt (1.9)

Note that the orthogonality relation∫ T/2

−T/2
ei2π(n2−n1)t/T dt = T δn1n2 =

{
T if n1 = n2

0 if n1 6= n2

, (1.10)

in terms of the Kronecker delta δn1n2 , becomes, in the limit of
infinite T , ∫ ∞

−∞
ei2π(f2−f1)t dt = δ(f2 − f1) (1.11)

where δ(f2 − f1) is the Dirac delta function defined by∫ ∞
−∞

δ(f2 − f1)H(f1) df1 = H(f2) ; (1.12)

we can check that we got the normalization right by noting

∞∑
n1=−∞

T δn1n2 δf =
∞∑

n1=−∞

δn1n2 = 1 (1.13)

1.1.1 Convolution

A common physical situation is for one quantity, as a function
of time, to be linearly related to another quantity, which we can
write as:

g(t) =

∫ ∞
−∞

A(t, t′)h(t′) dt′ . (1.14)

If the mapping of h(t) onto g(t) is stationary, e.g., doesn’t de-
pend on any time-dependent external factors, it can be written
even more simply:

g(t) =

∫ ∞
−∞

A(t− t′)h(t′) dt′ . (1.15)

This relationship is known as a convolution and is sometimes
written g = A ∗ h. It can be written even more simply if we
substitute in the form of A(t − t′) and h(t′) in terms of their
Fourier transforms:

h(t′) =

∫ ∞
−∞

h̃(f) ei2πft
′
df (1.16)

A(t− t′) =

∫ ∞
−∞

Ã(f ′) ei2πf
′(t−t′) df ′ (1.17)

(where we have used different names for the two frequency inte-
gration variables so we don’t mix them up) to get

g(t) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Ã(f ′) h̃(f) ei2π[f
′(t−t′)+ft′] df df ′ dt′

=

∫ ∞
−∞

∫ ∞
−∞

Ã(f ′) h̃(f) ei2πf
′t

∫ ∞
−∞

ei2π(f−f
′)t′ dt′ df ′ df

=

∫ ∞
−∞

∫ ∞
−∞

Ã(f ′) h̃(f) ei2πf
′t δ(f − f ′) df ′ df

=

∫ ∞
−∞

Ã(f) h̃(f) ei2πft df

(1.18)

which means that
g̃(f) = Ã(f) h̃(f) , (1.19)

i.e., convolution in the time domain is equivalent to multiplica-
tion in the frequency domain.

1.1.2 Properties of the Fourier Transform

Here are a number of important and useful properties obeyed
by Fourier transforms, and handy Fourier transforms of specific
functions:

• If h(t) is real, then h̃(−f) = h̃∗(f).
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• If h(t) = h0, a constant, then

h̃(f) =

∫ ∞
−∞

h0e
−i2πftdt = h0δ(f) (1.20)

• If h(t) = h0δ(t− t0), then h̃(f) = h0e
−i2πft0

• If h(t) is a square wave

h(t) =

{
h0

−τ
2
< t < τ

2

0 |t| > τ
2

(1.21)

then

h̃(f) = h0
sin 2πfτ

πf
= 2h0τ sinc 2fτ (1.22)

where

sincx =
sin πx

πx
(1.23)

is the normalized sinc function.

• If h(t) is a Gaussian

h(t) =
1

σ
√

2π
e−t

2/2σ2

(1.24)

then its Fourier transform is also a Gaussian:

h̃(f) = e−(2πf)
2/2σ−2

(1.25)

Note that the narrower the Gaussian is in the time domain,
the wider the corresponding Gaussian is in the frequency
domain. This is related to the Heisenberg uncertainty prin-
ciple.

• Dimensionally, the units of h̃(f) are the units of h(t) times
time (or divided by frequency). We’ll usually say, e.g., if

h(t) has units of “gertrudes”, h̃(f) has units of “gertrudes
per hertz”.

• ∫ ∞
−∞

h∗(t) g(t) dt =

∫ ∞
−∞

h̃∗(f) g̃(f) df (1.26)

It’s a useful exercise, and not too hard, to demonstrate each of
these.

Thursday, August 31, 2017

1.2 Discrete Fourier Transform

Recall that an ordinary Fourier series could be written in the
form (1.6) relating a finite-duration h(t) to its Fourier compo-

nents h̃(fn), with inverse relationship (1.8). The time variable t
is continuously-defined with finite duration, while the frequency
fn takes on only a discrete set of values, but ranges from −∞
to ∞. This situation is summarized as follows:

Resolution Extent
t continuous duration T
f discrete, δf = 1

T
infinite

When we took the limit as T →∞ to define the inverse Fourier
transform (1.7) and the Fourier transform (1.9) we ended up
with both frequency and time being continuously defined from
−∞ to ∞:

Resolution Extent
t continuous infinite
f continuous infinite

In an experimental situation, on the other hand, not only is the
duration finite, but the time is also discretely sampled. Consider
the simplest case of N samples separated by a fixed sampling
time of δt so that the total duration is T = N δt:

hj = h(tj) = h(t0 + j δt) j = 0, 1, . . . , N − 1 (1.27)
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we’d like to define the Fourier transform3

h̃(fk) =

∫ to+T

t0

h(t) e−i2πfk(t−t0) dt (1.28)

but we don’t have access to the full function h(t), only the dis-
crete samples {hj}. The best we can do, then, is approximate
the integral by a sum and see what we get:

N−1∑
j=0

hj e
−i2πfk(tj−t0) δt =

N−1∑
j=0

hj e
−i2π(k δf)(j δt) δt =

N−1∑
j=0

hj e
−i2πjk/N δt

(1.29)
where in the last step we’ve used the fact that

δf δt =
δt

T
=

1

N
(1.30)

Now, (1.29) is the discrete approximation to the Fourier trans-

form, so we could call it something like h̃k. But if you’re a
computer manipulating a set of numbers {hj}, you don’t really
need to know the physical sampling rate, except for the factor
of δt in (1.29). So the standard definition of the discrete Fourier
transform leaves this out:

ĥk =
N−1∑
j=0

hj e
−i2πjk/N (1.31)

3Note that for most real-world time-series data, all times (for example
GPS time–written as the number of seconds since 00:00:00 UTC on January
6, 1980–or Modified Julian Date) are measured relative to some reference
point, so t = 0 doesn’t have any absolute meaning, and different ways
of writing the time have different zeros, just like Fahrenheit and Celsius
temperatures do. So really expressions like (1.7) and (1.9) should have
t − t0 rather than t in the exponential, where t0 is some reference time to
be specified. This is a little subtle when it comes to the issue of convolution,
though, since the A(t − t′) appearing in (1.15) is a time difference rather
than a time, and thus A(0) is meaningful, and the inverse Fourier transform
(1.17) would not need to refer to a t0, even if (1.16) did.

In principle (1.31) can be used to define the discrete Fourier
transform for any integer k. However, we can see that not all of
the ĥk are independent; in particular,

ĥk+N =
N−1∑
j=0

hj e
−i2πjk/N e−i2πj =

N−1∑
j=0

hj e
−i2πjk/N = ĥk (1.32)

where we have used the fact that

e−i2πj = cos 2πj − i sin 2πj = 1 (1.33)

since j is an integer. This means there are only N independent
ĥk values, which is not surprising, since we started with N sam-
ples {hj}. One choice is to let k go from 0 to N − 1, and we can
use that to calculate the inverse transform by starting with

N−1∑
k=0

ĥk e
i2πjk/N =

N−1∑
k=0

N−1∑
`=0

h` e
i2π(j−`)k/N (1.34)

If we recall that

1− aN = (1− a) (1 + a+ a2 + . . .+ aN−1) (1.35)

we can see that

N−1∑
k=0

ei2π(j−`)k/N =
N−1∑
k=0

(
ei2π(j−`)/N

)k
=

{
N if j = ` mod N
1−ei2π(j−`)

1−ei2π(j−`)/N = 0 if j 6= ` mod N

(1.36)

i.e.,
N−1∑
k=0

ei2π(j−`)k/N = N δj,` mod N (1.37)
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so
N−1∑
k=0

ĥk e
i2πjk/N =

N−1∑
`=0

h`N δj,` mod N = Nhj (1.38)

and the inverse transform is

hj =
1

N

N−1∑
k=0

ĥk e
i2πjk/N (1.39)

Note that the asymmetry between the forward and reverse trans-
form arose because we left out the factor of δt from (1.31); if we
write

(ĥk δt) =
N−1∑
j=0

hj e
−i2πjk/N δt (1.40)

then the inverse transform is

hj =
N−1∑
k=0

(ĥk δt) e
i2πjk/N 1

N δt
=

N−1∑
k=0

(ĥk δt) e
i2πjk/N δf (1.41)

which restores the notational symmetry of the continuous
Fourier transform.

1.2.1 Nyquist Frequency and Aliasing

In this discussion we’ll assume the number of samples N is even;
the generalization to odd N is straightforward.

We saw above that if you take the discrete Fourier transform
of N data points {hj}, the periodicity ĥk+N = ĥk means that
only N of the Fourier components are independent. We implic-
itly considered those to be {ĥk|k = 0, 1, . . . , N − 1}, which is
certainly convenient if you’re a computer, but it doesn’t really
make the most physical sense.

For example, consider the behavior of the discrete Fourier
transform if the original time series is real, so that h∗j = hj.

if h∗j = hj, ĥ∗k =

(
N−1∑
j=0

hj e
−i2πjk/N

)∗
=

N−1∑
j=0

hj e
i2πjk/N

= ĥ−k = ĥN−k
(1.42)

If we confine our attention to 0 ≤ k ≤ N − 1, the appropriate
symmetry relation is ĥN−k = ĥ∗k, which means the second half
of the list of Fourier components is determined by the first. But
this seems a little bit removed from the corresponding symmetry
property h̃(−f) = h̃∗(f) from the continuous Fourier transform.

To better keep positive and negative frequencies together,
we’d like to consider the physically interesting set of N Fourier
components to be{

ĥk

∣∣∣∣k = −N
2
, . . . ,

N

2
− 1

}
. (1.43)

It’s a matter of convention that we include −N/2 rather than
N/2 in the list. It makes things more convenient for fftshift()
functions in SciPy, matlab, etc., which move the Fourier com-
ponents {ĥN/2, . . . , ĥN−1} to the front of a vector so they can

represent {ĥ−N/2, . . . , ĥ−1}.
Note now that the reality condition becomes

if h∗j = hj, ĥ∗k = ĥ−k (1.44)

which means that all of the negative components
{ĥ−N/2+1, . . . , ĥ−1} of the DFT of a real series are just the
complex conjugates of the corresponding positive components.
The reality condition also enforces

ĥ0 = ĥ∗0 ∈ R (1.45a)

ĥ−N/2 = ĥ∗N/2 = ĥ∗−N/2 ∈ R (1.45b)
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So from N real samples {hj|j = 0, . . . , N − 1} we get a discrete
Fourier transform completely described by 2 real components
ĥ0 and ĥ−N/2 = ĥN/2 and N

2
− 1 complex components {ĥk|k =

1, . . . , N
2
− 1}.

The frequency corresponding to the last Fourier component,

∣∣f−N/2∣∣ =
∣∣fN/2∣∣ =

N

2
δf =

1

2 δt
(1.46)

is half of the sampling frequency 1/δt, and is known as the
Nyquist frequency.4 It is the highest frequency which can be
resolved in the discrete Fourier transform of a series sampled
with a sampling time δt. Of course, as we’ve seen, frequencies
above the Nyquist frequency, which correspond to Fourier com-
ponents with k > N/2, aren’t invisible, they just show up in
the same place as lower frequencies. For example, consider a
cosine wave with a frequency of 3 Hz, sampled with a time step
of δt = 0.25 sec:

4There’s an unfortunate bit of linguistic confusion. If you know the
sampling frequency 1/δt, then the Nyquist frequency 1/(2δt) is the highest
independent frequency in your Fourier transform. On the other hand, if
you’re trying to discretely sample a continuous time series which is band-
limited with some highest frequency so that h̃(f) vanishes for |f | > fc,
then the lowest sample rate 1/δt that you can use to avoid aliasing is 2fc;
if 1δt > 2fc then fc < 1/(2δt). Somewhat confusingly, this is called the
Nyquist rate.

If we just look at the dots, they don’t look like a 3 Hz cosine
wave, but rather like one with a frequency of 1 Hz. And indeed,
we’d get the exact same samples if we sampled a 1 Hz at the
same rate:
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This is because f = 3 Hz is above the Nyquist frequency at this
sampling rate, which is fNy = 2 Hz. The higher-frequency cosine
wave has been aliased down to a frequency of fNy− f = −1 Hz.

Note, in closing, that the range of independent frequencies,
from −fNy to +fNy, is 2 |fNy| = 1

δt
so we can fill in the table for

time-frequency resolution and extent:

Resolution Extent
t discrete, δt duration T
f discrete, δf = 1

T
finite, 2 |fNy| = 1

δt

Tuesday, September 5, 2017

2 Spectral Analysis of Random Data

2.1 Amplitude Spectrum

Given a real time series h(t) we know how to construct its Fourier
transform

h̃(f) =

∫ ∞
−∞

h(t) e−i2πft dt (2.1)

or the equivalent discrete Fourier transform from a set of samples
{hj|j = 0, . . . , N − 1}:

ĥk =
N−1∑
j=0

hj e
−i2πjk/N (2.2)

where ĥk δt ∼ h̃(fk).

Think about the physical meaning of h̃(f), by breaking this
complex number up into an amplitude and phase

h̃(f) = A(f) eiφ(f) . (2.3)

If h(t) is real, the condition h̃(−f) = h̃∗(f) = A(f)e−iφ(f) means
A(−f) = A(f) and φ(−f) = −φ(f). Thus we can write the
inverse Fourier transform as

h(t) =

∫ 0

−∞
A(f) ei[2πft+φ(f)] df +

∫ ∞
0

A(f) ei[2πft+φ(f)] df

=

∫ ∞
0

A(f)
(
ei[2πft+φ(f)] + e−i[2πft+φ(f)]

)
df

=

∫ ∞
0

2A(f) cos (2πft+ φ(f)) df

(2.4)

So A(f) is a measure of the amplitude at frequency f and φ(f)
is the phase.

Note also that∫ ∞
−∞

(
h(t)

)2
dt =

∫ ∞
−∞
|h̃(f)|2 df (2.5)

This works pretty well if the properties of h(t) are determin-
istic. But suppose h(t) is modelled as random, i.e., it depends
on a lot of factors we don’t know about, and all we can really do
is make statistical statements. What is a sensible description of
the spectral content of h?

2.2 Random Variables

Consider a random variable x. Its value is not known, but we
can talk about statistical expectations as to its value. We will
have a lot more to say about this soon, but for now imagine we
have a lot of chances to measure x in an ensemble of identically-
prepared systems. The hypothetical average of all of those imag-
ined measurements is called the expectation value and we write
it as E [x]. (Another notation is 〈x〉.) We can also take some
known function f and talk about the expectation value E [f(x)]
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corresponding to a large number of hypothetical measurements
of f(x).

The expectation value of x itself is the mean, sometimes ab-
breviated as µ. (This name is taken by analogy to the mean of
an actual finite ensemble.) Since x is random, though, x won’t
always have the value E [x]. We can talk about how far off x
typically is from its average value E [x]. Note however that

E [x− µ] = E [x]− E [µ] = E [x]− µ = 0 (2.6)

since the expectation value is a linear operation (being the ana-
logue of an average), and the expectation value of a non-random
quantity is just the quantity itself. So instead of the mean de-
viation from the mean, we need to consider the mean square
deviation from the mean

E
[
(x− µ)2

]
(2.7)

This is called the variance, and is sometimes written σ2. Its
square root, the root mean square (RMS) deviation from the
mean, is the standard deviation.

2.2.1 Random Sequences

Now imagine we have a bunch of random variables {xj}; in
principle each can have its own mean µj = E [xj] and vari-
ance σ2

j = E [(xj − µj)2]. But we can also think about possible
correlations σ2

j` = E [(xj − µj)(x` − µ`)]; if the variables are
uncorrelated σ2

j` = δj` σ
2
j , but that need not be the case.

Think specifically about a series of N samples which are all
uncorrelated random variables with zero mean and the same
variance:

E [xj] = 0; E [xjx`] = δj` σ
2 ; (2.8)

what are the characteristics of the discrete Fourier transform of
this sequence?

x̂k =
N−1∑
j=0

xj e
−i2πjk/N (2.9)

Well,

E [x̂k] =
N−1∑
j=0
��
��*

0
E [xj] e

−i2πjk/N = 0 (2.10)

and

E [x̂kx̂
∗
` ] =

N−1∑
j=0

N−1∑
n=0

E [xjxn] e−i2π(jk−n`)/N =
N−1∑
j=0

σ2e−i2πj(k−`)/N

= Nσ2δk,` mod N

(2.11)

so the Fourier components are also uncorrelated random vari-
ables with variance

E
[
|x̂k|2

]
= Nσ2 (2.12)

Note this is independent of k, which is maybe a bit surprising.
After all, it’s natural to think all times are alike, but all frequen-
cies need not be. Random data like this, which is the same at all
frequencies, is called “white noise”. To gain some more insight
into white and colored noise, it helps to think about the same
thing in the idealization of the continuous Fourier transform.

2.3 Continuous Random Data

Think about the continuous-time analog to the random sequence
considered in section 2.2.1. This is a time series x(t) which is
characterized by statistical expectations. In particular we could
talk about its expectation value

E [x(t)] = µ(t) (2.13)
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and the expectation value of the product of samples taken at
possibly different times

E [x(t)x(t′)] = Kx(t, t
′) (2.14)

(it’s conventional not to subtract out µ(t) here). Note that
E [x(t)] is not the time-average of a particular instantiation of
x(t), although the latter may sometimes be used to estimate the
former.

2.3.1 White Noise

Now, for white noise we need the continuous-time equivalent of
(2.8), in which the data is uncorrelated with itself except at the
very same time. In the case of continuous time, the sensible
thing is the Dirac delta function, so white noise is characterized
by

E [x(t)x(t′)] = K0 δ(t− t′) (2.15)

where K0 is a measure of how “loud” the noise is. In the fre-
quency domain, this means

E [x̃(f)x̃∗(f ′)] =

∫ ∞
−∞

∫ ∞
−∞

E [x(t)x(t′)] e−i2π(ft−f
′t′) dt dt′

= K0

∫ ∞
−∞

e−i2π(f−f
′)t dt = K0 δ(f − f ′) .

(2.16)

2.3.2 Colored Noise

A lot of times, the quantity measured in an experiment is related
to some starting quantity by a linear convolution, so even if
we start out with white noise, we could end up dealing with
something that has different properties. If we consider some

random variable h(t) which is produced by convolving white
noise with a deterministic response function R(t− t′), so that

h(t) =

∫ ∞
−∞

R(t− t′)x(t′) dt′ (2.17)

and in the frequency domain

h̃(f) = R̃(f)x̃(f) (2.18)

we have

E[h̃(f)h̃∗(f ′)] = K0 |R̃(f)|2 δ(f − f ′) . (2.19)

Note that even in this case, E[|h̃(f)|2] blows up, so simply look-
ing at the magnitudes of Fourier components is not the most
useful thing to do. However, the quantity K0 |R̃(f)|2 which mul-
tiplies the delta function can be well-behaved, and gives a useful
spectrum. We’ll see that this is the power spectral density Sh(f),
which we’ll define more carefully in a bit.

We can also go back into the time domain in this example,
and calculate the autocorrelation

Kh(t, t
′) = E [h(t)h(t′)]

=

∫ ∞
−∞

∫ ∞
−∞

R(t− t1)R(t′ − t′1)E [x(t1)x(t′1)] dt1 dt
′
1

=

∫ ∞
−∞

K0R(t− t1)R(t′ − t1) dt1

(2.20)

which is basically the convolution of the response function with
itself, time reversed; unlike in the case of white noise, where
Kx(t, t

′) was a delta function, this will in general be finite.

Note that in this example, the autocorrelation Kh(t, t
′) is un-
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changed by shifting both of its arguments:

Kh(t+ τ, t′ + τ) = K0

∫ ∞
−∞

R(t− [t1 − τ ])R(t′ − [t1 − τ ]) dt1

= K0

∫ ∞
−∞

R(t− t2)R(t′ − t2) dt2 = Kh(t, t
′)

(2.21)

where we make the change of integration variables from t1 to
t2 = t1 − τ . This means that in this colored noise case the
autocorrelation is a function only of t− t′.

2.4 Wide-Sense Stationary Data

We now turn to a general formalism which incorporates our
observations about colored noise. A random time series h(t)
is called wide-sense stationary if it obeys

E [h(t)] = µ = constant (2.22)

and
E [h(t)h(t′)] = Kh(t− t′) . (2.23)

Clearly, both our white noise and colored noise examples were
wide-sense stationary. The appearance of a convolution in the
time-domain (2.20) a product in the frequency domain (2.19)
suggests to us that the Fourier transform of the auto-correlation
function Kh(t−t′) is a useful quantity. We thus define the power
spectral density as

Sh(f) =

∫ ∞
−∞

Kh(τ) e−i2πfτ dτ . (2.24)

Note that by the construction (2.23) the autocorrelation is even
in its argument [Kh(τ) = Kh(−τ)] so the PSD of real data will
be real and even in f .

We can then show that for a general wide-sense stationary
process,

E[h̃(f)h̃∗(f ′)] =

∫ ∞
−∞

∫ ∞
−∞

E [h(t)h(t′)] e−i2π(ft−f
′t′) dt dt′

=

∫ ∞
−∞

∫ ∞
−∞

Kh(τ) e−i2πfτe−i2π(f−f
′)t′ dτ dt′

= δ(f − f ′)Sh(f) ,

(2.25)

where we make the change of variables from t to τ = t− t′.

2.4.1 Symmetry Properties of the Auto-Correlation
and the PSD

We can see from the definition (2.23) and the result (2.25) that,
for real data, both Kh(τ) and Sh(f) are real and even, and in
particular that Sh(f) = Sh(−f). (Of course the fact that Kh(τ)
and Sh(f) are Fourier transforms of each other means that once
we know the symmetry properties of one, we can deduce the sym-
metry properties of the other.) Because it’s defined at both pos-
itive and negative frequencies, the power spectral density Sh(f)
that we’ve been using is called the two-sided PSD. Since the dis-
tinction between positive and negative frequencies depends on
things like the sign convention for the Fourier transform, it is
sometimes considered more natural to define a one-sided PSD
which is defined only at non-negative frequencies, and contains
all of the power at the corresponding positive and negative fre-
quencies:

S1-sided
h (f) =

{
Sh(0) f = 0

Sh(−f) + Sh(f) f > 0
(2.26)

Apparently, for real data, S1-sided
h (f) = 2Sh(f) when f > 0.

11



If the original time series is not actually real, there is a
straightforward generalization of the definition of the auto-
correlation function:

E [h(t)h∗(t′)] = Kh(t− t′) (2.27)

The PSD is then defined as the Fourier transform of this, and
(2.25) holds as before. Examination of (2.27) and (2.25) shows
that, for complex data, the symmetry properties which remain
are

• Kh(−τ) = K∗h(τ)

• Sh(f) is real.

Thursday, September 7, 2017

2.5 Power Spectrum Estimation

Suppose we have a stretch of data, duration T , sampled at in-
tervals of δt, from a wide-sense stationary data stream,

hj = h(t0 + j δt) (2.28)

where the autocorrelation

Kh(t− t′) = E [h(t)h(t′)] (2.29)

and its Fourier transform (the power spectral density or PSD)

Sh(f) =

∫ ∞
−∞

Kh(τ) e−i2πfτ dτ (2.30)

are unknown. How do we estimate Sh(f)? One idea, keeping in
mind that

E[h̃(f)h̃∗(f ′)] = δ(f − f ′)Sh(f) , (2.31)

is to use the discrete Fourier components to construct

|ĥk|2 (2.32)

this is, up to normalization, the periodogram. Now, we’re going
to have to be a little careful about just using the identification

ĥk δt ∼ h̃(fk) (2.33)

where

fk = k δf =
k

T
; (2.34)

after all, taking that literally would mean setting f and f ′ both
to fk and evaluating the delta function at zero argument. So we
need to be a little more careful about the approximation that
relates the discrete and continuous Fourier transforms.

2.5.1 The Discretization Kernel ∆N(x)

If we substitute the continuous inverse Fourier transform into
the discrete forward Fourier transform, we find

ĥk =
N−1∑
j=0

h(t0 + j δt) e−i2πjk/N =
N−1∑
j=0

∫ ∞
−∞

h̃(f) e−i2πjk/N ei2πf j δt df

=

∫ ∞
−∞

(
N−1∑
j=0

e−i2πj(fk−f)δt

)
h̃(f) df =

∫ ∞
−∞

∆N([fk − f ]δt) h̃(f) df

(2.35)
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where we have defined5

∆N(x) =
N−1∑
j=0

e−i2πjx . (2.36)

Let’s look at some of the properties of this ∆N(x). First, if x
is an integer,

∆N(x) =
N−1∑
j=0

e−i2πjx =
N−1∑
j=0

1 = N (x ∈ Z) (2.37)

Next, note that ∆N(x) is periodic in x with period 1, since

∆N(x+ 1) =
N−1∑
j=0

e−i2πj(x+1) =
N−1∑
j=0

e−i2πjxe−i2πj

=
N−1∑
j=0

e−i2πjx = ∆N(x) .

(2.38)

Note that this is not surprising for something that relates a dis-
crete to a continuous Fourier transform; incrementing [fk− f ]δt
by 1 is the same as decrementing f by 1/δt, which is twice the
Nyquist frequency. This is just the usual phenomenon of alias-
ing, where many continuous frequency components, separated at
intervals of 1/δt, are mapped onto the same discrete component.

Note also that

∆N(`/N) =
N−1∑
j=0

e−i2πj`/N = 0 ` ∈ Z and ` 6= 0 mod N

(2.39)

5This is closely related to the Dirichlet kernel

n∑
k=−n

e−ikx =
sin ([2n+ 1]x/2)

sin (x/2)

.

of course, it’s sort of cheating to quote that result from before,
since we got it by actually evaluating the sum, so let’s do that
again. Since

(1− aN) = (1− a)
N−1∑
j=0

aj , (2.40)

if we set a = e−i2πx, we get, for x /∈ Z (which means a 6= 1),

∆N(x) =
1− e−i2πNx

1− e−i2πx
=
e−iπNx

e−iπx
eiπNx − e−iπNx

ei2πx − e−i2πx
= e−iπ(N−1)x

sin πNx

sin πx
(2.41)

so, to summarize,

∆N(x) =

{
N , x ∈ Z
e−iπ(N−1)x

(
sinπNx
sinπx

)
, x /∈ Z

(2.42)

2.5.2 Derivation of the Periodogram

Now that we have a more precise relationship between ĥk and
h̃(f), we can think about |ĥk|2, and in particular its expectation
value:

E[|ĥk|2] =

∫ ∞
−∞

∫ ∞
−∞

∆N([fk − f ]δt)∆∗N([fk − f ′]δt)E[h̃(f)h̃∗(f ′)] df df ′

=

∫ ∞
−∞
|∆N([fk − f ]δt)|2 Sh(f) df

(2.43)

We can get a handle on

|∆N(x)|2 =

(
sin πNx

sin πx

)2

(2.44)

by looking at some plots of it in NumPy/matplotlib; see the
ipython notebook http://ccrg.rit.edu/~whelan/courses/

2017_1sp_ASTP_611/data/notes_fourier_kernel.ipynb
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The upshot is that |∆N(x)|2 is an approximation to a sum of
Dirac delta functions (one peaked at each integer value of x):

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
x

0

64

128

192

256

|�

N
(x
)|2

N=16

and this approximation is better for higher N :

�3/32 �2/32 �1/32 0/32 1/32 2/32 3/32
x

0

1024

2048

3072

4096

|�

N
(x
)|2

N=16

N=64

We can write this situation as

|∆N(x)|2 ≈ NN
∞∑

s=−∞

δ(x+ s) (2.45)

To get the overall normalization constant NN , we have to inte-
grate both sides of (2.45), using the fact that∫ ∞

−∞
δ(x) dx = 1 (2.46)

Of course, we don’t actually want to integrate |∆N(x)|2 from
−∞ to ∞, because it’s periodic, and we’re bound to get some-
thing infinite when we add up the contributions from the infinite
number of peaks. And likewise, the right-hand side contains an
infinite number of delta functions. So we should just integrate
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over one cycle, using ∫ 1/2

−1/2
δ(x) dx = 1 (2.47)

and choose NN so that∫ 1/2

−1/2
|∆N(x)|2 dx = NN

∞∑
s=−∞

∫ 1/2

−1/2
δ(x+ s) dx = NN (2.48)

We could explicitly evaluate (or look up) the integral of

|∆N(x)|2 =
(
sinπNx
sinπx

)2
, but it turns out to be easier to evalu-

ate it as

NN =

∫ 1/2

−1/2
∆N(x)[∆N(x)]∗ dx =

∫ 1/2

−1/2

N−1∑
j=0

e−i2πjx
N−1∑
`=0

ei2π`x dx

=
N−1∑
j=0

N−1∑
`=0

∫ 1/2

−1/2
e−i2π(j−`)x dx .

(2.49)

But the integral is straighforward:∫ 1/2

−1/2
e−i2π(j−`)x dx =

{
1 j = `
sin(π[j−`])
π(j−`) j 6= `

= δj` (2.50)

so ∫ 1/2

−1/2
e−i2π(j−`)x dx = δj` j, ` ∈ Z (2.51)

and the normalization constant is

NN =
N−1∑
j=0

N−1∑
`=0

δj` = N (2.52)

and

|∆N(x)|2 ≈ N

∞∑
s=−∞

δ(x− s) (2.53)

We can now substitute this back into (2.43) and find

E

[∣∣∣ĥk∣∣∣2] =

∫ ∞
−∞
|∆N([fk − f ]δt)|2 Sh(f) df

≈ N
∞∑

s=−∞

∫ ∞
−∞

δ([fk − f ]δt− s)Sh(f) df

=
N

δt

∞∑
s=−∞

∫ ∞
−∞

δ(f − [fk − s/δt])Sh(f) df

=
N

δt

∞∑
s=−∞

Sh(fk − s/δt) .

(2.54)

That means that the correct definition of the periodogram is

Pk :=
δt

N

∣∣∣ĥk∣∣∣2 . (2.55)

Its expectation value is

E [Pk] =

∫ ∞
−∞

δt

N
|∆N([fk − f ]δt)|2 Sh(f) df ≈

∞∑
s=−∞

Sh(fk−s/δt)

(2.56)

2.5.3 Shortcomings of the Periodogram

There are a few ways in which the periodogram is not quite an
ideal estimate of the underlying PSD Sh(f):

1. As noted above, it’s not actually an approximation to the
PSD at fk, but to that, plus the PSD at fk + 1/δt plus
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the PSD at fk + 2/δt etc. This is the usual aliasing phe-
nomenon; since 1/δt is twice the Nyquist frequency, we
can avoid it by doing some sort of analog processing of
our original time series so that Sh(f) = 0 if |f | is above
the Nyquist frequency, and then confining attention to k
between −N/2 and N/2 − 1 so that fk is between minus
Nyquist and Nyquist. We’ll assume we’ve done that.

2. The function |∆N([fk − f ]δt)|2 is not actually the greatest
approximation to the Dirac delta function, because of the
“ringing” in the side lobes outside of the main peak. This
means the periodogram estimate at a given frequency will
be “contaminated” with data from nearby frequencies to a
greater degree than necessary. This phenomenon is called
spectral leakage. The source of this problem is that by sam-
pling h(t) only from t0 to t0+T , we’ve effectively multiplied
it by a rectangular window in the time domain

Wr(t) =


0 t < t0

1 t0 ≤ t < T

0 t ≥ T

(2.57)

which means the Fourier transform is the convolution of
W̃ (f) with h̃(f). We know that the Fourier transform of a
rectangle is not the nicest thing in the world, so we’re better
off multiplying the data by a window which more smoothly
rises from 0 to 1 and then goes back down again, since its
Fourier transform will stretch out less in frequencies. We
won’t elaborate on that further right now, but see, e.g.,
Section 13.4 of Numerical Recipes for more.

3. While Pk has the right expected mean (2.56), its expected
variance

E
[
(Pk − E [Pk])

2
]

= E
[
P 2
k

]
− E [Pk]

2 , (2.58)

which is a measure of the square of the typical error asso-
ciated with the estimate, is larger than we’d like. We can
look at

E
[
P 2
k

]
=

(
δt

N

)2

E
[
ĥkĥ

∗
kĥkĥ

∗
k

]
; (2.59)

now, we can’t actually evaluate this without saying more
about the properties of h(t) than we’ve specified. We’ve
talked about the expectation value and the autocorrelation,
but not the full distribution of probabilities of possible val-
ues. We’ll soon develop the machinery to consider such
things, but for now, we’ll just state that for some choices of
that underlying distribution

E
[
ĥkĥ

∗
kĥkĥ

∗
k

]
∼ 2E

[
ĥkĥ

∗
k

]
E
[
ĥkĥ

∗
k

]
(2.60)

and if that’s the case

E
[
P 2
k

]
∼ 2

(
δt

N

∣∣∣ĥk∣∣∣)2

= 2E [Pk]
2 (2.61)

but that means the expected mean square error is the square
of the expectation value itself:

E
[
(Pk − E [Pk])

2
]
∼ E [Pk]

2 ≈ [Sh(fk)]
2 (2.62)

so we have an estimate of the power whose typical error is
the same size as the estimate itself!

Note that this is independent of T , which means you don’t
get any better of an estimate of the PSD of a wide-sense sta-
tionary process by including more data in the periodogram.
This is perhaps not so surprising if we recall that the dis-
crete Fourier transform was developed in the context of
deterministic data. Having a longer stretch of data pro-
duces higher resolution in the frequency domain, because
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δf = 1
T

. So that means if you construct a periodogram
from 50 seconds of data, you get not-very-accurate PSD es-
timates at frequencies separated by 0.02 Hz. If you use 200
seconds, you get PSD estimates at more frequencies, just
0.005 Hz apart, but they’re not any more accurate; they still
have RMS expected errors equal to their expectation values.
However, if the underlying PSD Sh(f) doesn’t vary much as
a function of frequency, then Sh(43.000 Hz), Sh(43.005 Hz),
Sh(43.010 Hz) etc may be more or less the same, and so the
corresponding periodograms will be estimates of roughly
the same quantity. So you’d want to average those together
to get a more accurate estimate. I.e., you want to lower the
frequency resolution.

You can get a lower frequency resolution by doing your
Fourier transforms over a shorter time, i.e., by breaking
up the time T into Nc chunks, each of duration T/Nc, then
doing discrete Fourier transforms over theN = T

Ncδt samples
in each chunk. The periodogram from the αth chunk is then

Pαk =
δt

N

∣∣∣ĥk∣∣∣2 ; (2.63)

its frequency resolution is

δf =
1

N δt
=
Nc
T

. (2.64)

Each periodogram has expected mean

E [Pαk] ≈ P (fk) = P (kδf) (2.65)

and variance

E
[
P 2
αk

]
− E [Pαk] ≈ [P (fk)]

2 (2.66)

as before. But we can take the average of all Nc peri-
odograms

P k =
1

Nc

Nc−1∑
α=0

Pαk (2.67)

and since averaging independent random variables lowers
the resulting variance,

E
[
P k

]
= P (fn) (2.68)

and variance

E
[
P

2

k

]
− E

[
P k

]
≈ [P (fk)]

2

Nc
. (2.69)

So the error in the PSD estimation shrinks like 1/
√
Nc. We

can get a more accurate estimate of the PSD by breaking
the time up into chunks and averaging, but at the expense
of a coarser frequency resolution. The appropriate tradeoff
depends on the sharpness of the features that we want to
resolve in the spectrum.
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