Computational Methods for Astrophysics: Fourier Transforms

John T. Whelan
(filling in for Joshua Faber)

April 27, 2011

Fourier Analysis

Outline: Fourier Transforms

- Continuous Fourier Transforms
- Discrete Fourier Transforms
- Sampling and Aliasing
- The Fast Fourier Transform

Continuous Fourier Transforms

- Fourier transform $\widetilde{h}(f)$ of time series $h(t)$:

$$
\widetilde{h}(f)=\int_{-\infty}^{\infty} h(t) e^{-i 2 \pi f\left(t-t_{0}\right)} d t \Longleftrightarrow h(t)=\int_{-\infty}^{\infty} \widetilde{h}(f) e^{i 2 \pi f\left(t-t_{0}\right)} d f
$$

- Alternate conventions:

$$
\begin{aligned}
& \widetilde{h}(f)=\int_{-\infty}^{\infty} h(t) e^{-i 2 \pi f\left(t-t_{0}\right)} d t \\
& h(t)=\int_{-\infty}^{\infty} \widetilde{h}(f) e^{i 2 \pi f\left(t-t_{0}\right)} d f
\end{aligned}
$$

Continuous Fourier Transforms

- Fourier transform $\widetilde{h}(f)$ of time series $h(t)$:

$$
\widetilde{h}(f)=\int_{-\infty}^{\infty} h(t) e^{-i 2 \pi f\left(t-t_{0}\right)} d t \Longleftrightarrow h(t)=\int_{-\infty}^{\infty} \widetilde{h}(f) e^{i 2 \pi f\left(t-t_{0}\right)} d f
$$

- Alternate conventions: sign of i,

$$
\begin{aligned}
& \widetilde{h}(f)=\int_{-\infty}^{\infty} h(t) e^{i 2 \pi f\left(t-t_{0}\right)} d t \\
& h(t)=\int_{-\infty}^{\infty} \widetilde{h}(f) e^{-i 2 \pi f\left(t-t_{0}\right)} d f
\end{aligned}
$$

Continuous Fourier Transforms

- Fourier transform $\widetilde{h}(f)$ of time series $h(t)$:

$$
\widetilde{h}(f)=\int_{-\infty}^{\infty} h(t) e^{-i 2 \pi f\left(t-t_{0}\right)} d t \Longleftrightarrow h(t)=\int_{-\infty}^{\infty} \widetilde{h}(f) e^{i 2 \pi f\left(t-t_{0}\right)} d f
$$

- Alternate conventions: sign of i, f vs ω,

$$
\begin{gathered}
h_{\omega}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} h(t) e^{-i \omega\left(t-t_{0}\right)} d t \\
h(t)=\int_{-\infty}^{\infty} h_{\omega} e^{i \omega\left(t-t_{0}\right)} d \omega
\end{gathered}
$$

Continuous Fourier Transforms

- Fourier transform $\widetilde{h}(f)$ of time series $h(t)$:

$$
\widetilde{h}(f)=\int_{-\infty}^{\infty} h(t) e^{-i 2 \pi f\left(t-t_{0}\right)} d t \Longleftrightarrow h(t)=\int_{-\infty}^{\infty} \widetilde{h}(f) e^{i 2 \pi f\left(t-t_{0}\right)} d f
$$

- Alternate conventions: sign of i, f vs ω, normalization,

$$
\begin{aligned}
h_{\omega} & =\int_{-\infty}^{\infty} h(t) e^{-i \omega\left(t-t_{0}\right)} d t \\
h(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} h_{\omega} e^{i \omega\left(t-t_{0}\right)} d \omega
\end{aligned}
$$

Continuous Fourier Transforms

- Fourier transform $\widetilde{h}(f)$ of time series $h(t)$:

$$
\widetilde{h}(f)=\int_{-\infty}^{\infty} h(t) e^{-i 2 \pi f\left(t-t_{0}\right)} d t \Longleftrightarrow h(t)=\int_{-\infty}^{\infty} \widetilde{h}(f) e^{i 2 \pi f\left(t-t_{0}\right)} d f
$$

- Alternate conventions: sign of i, f vs ω, normalization,

$$
\begin{aligned}
& h_{\omega}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h(t) e^{-i \omega\left(t-t_{0}\right)} d t \\
& h(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h_{\omega} e^{i \omega\left(t-t_{0}\right)} d \omega
\end{aligned}
$$

Continuous Fourier Transforms

- Fourier transform $\widetilde{h}(f)$ of time series $h(t)$:

$$
\widetilde{h}(f)=\int_{-\infty}^{\infty} h(t) e^{-i 2 \pi f\left(t-t_{0}\right)} d t \Longleftrightarrow h(t)=\int_{-\infty}^{\infty} \widetilde{h}(f) e^{i 2 \pi f\left(t-t_{0}\right)} d f
$$

- Alternate conventions: sign of i, f vs ω, normalization, time origin

$$
\begin{aligned}
\widetilde{h}(f) & =\int_{-\infty}^{\infty} h(t) e^{-i 2 \pi f t} d t \\
h(t) & =\int_{-\infty}^{\infty} \widetilde{h}(f) e^{i 2 \pi f t} d f
\end{aligned}
$$

Continuous Fourier Transforms

- Fourier transform $\widetilde{h}(f)$ of time series $h(t)$:

$$
\widetilde{h}(f)=\int_{-\infty}^{\infty} h(t) e^{-i 2 \pi f\left(t-t_{0}\right)} d t \Longleftrightarrow h(t)=\int_{-\infty}^{\infty} \widetilde{h}(f) e^{i 2 \pi f\left(t-t_{0}\right)} d f
$$

- Alternate conventions: sign of i, f vs ω, normalization, time origin
- If $h(t)$ is real, $\widetilde{h}(-f)=\widetilde{h}^{*}(f)$
- Convolution theorem:

$$
g(t)=\int_{-\infty}^{\infty} A\left(t-t^{\prime}\right) h\left(t^{\prime}\right) d t^{\prime} \Longleftrightarrow \widetilde{g}(f)=\widetilde{A}(f) \widetilde{h}(f)
$$

- Can Fourier transform in space as well as time; e.g.,

$$
\widetilde{h}\left(f_{x}, f_{y}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) e^{i 2 \pi\left(f_{x} x+f_{y} y\right)} d x d y
$$

A Few Words About Convolution

$$
g(t)=\int_{-\infty}^{\infty} A\left(t-t^{\prime}\right) h\left(t^{\prime}\right) d t^{\prime}
$$

- Can be written in different-looking but equivalent ways, e.g.

$$
g(t)=\int_{-\infty}^{\infty} A(\tau) h(t-\tau) d \tau
$$

- Because $A(\tau)$ is a function of a time difference, its Fourier transform is always defined $w /$ zero time origin:

$$
\widetilde{A}(f)=\int_{-\infty}^{\infty} A(\tau) e^{-i 2 \pi f \tau} d \tau
$$

- Arises naturally in astrophysical science \& technology: superposition of impulse responses, point-spread fcn of imaging device, linear transfer function, ...

Applications of the Fourier Transform

- Multiply Fourier transforms to calculate convolution
- Differential equations:

$$
\frac{d^{n}}{d t^{n}} h(t) \Leftrightarrow(i 2 \pi f)^{n} \widetilde{h}(f)
$$

- Spectral analysis
- Matched/optimal filtering when spectral properties of signal and/or noise are known

Discrete Fourier Transforms

- DFT of N-point sequence $\left\{h_{j} \mid j=0, \ldots, N-1\right\}$:

$$
\widehat{h}_{k}=\sum_{j=0}^{N-1} h_{j} e^{-i 2 \pi j k / N} \quad \Longleftrightarrow \quad h_{j}=\frac{1}{N} \sum_{k=0}^{N-1} \widehat{h}_{k} e^{i 2 \pi j k / N}
$$

- Corresponds to CFT of discretized data:

$$
h_{j}=h\left(t_{0}+j \delta t\right) \quad \Longleftrightarrow \quad \widehat{h}_{k} \delta t \sim \widetilde{h}\left(\frac{k}{N \delta t}\right)
$$

- Again, different conventions (mostly $\pm i \&$ where to put $\frac{1}{N}$); always wise to check your FT package's documentation
- Note by construction $\widehat{h}_{N+k}=\widehat{h}_{k}$; means e.g., 8-pt FT packed

\hat{h}_{0}	\hat{h}_{1}	\hat{h}_{2}	\hat{h}_{3}	\hat{h}_{-4}	\hat{h}_{-3}	\hat{h}_{-2}	\hat{h}_{-1}

Sometimes use fftshift fcn to swap halves of array \& get

\widehat{h}_{-4}	\widehat{h}_{-3}	\hat{h}_{-2}	\widehat{h}_{-1}	\widehat{h}_{0}	\widehat{h}_{1}	\widehat{h}_{2}	\widehat{h}_{3}

DFTs of Real and Complex Data

- For complex data, N cmplx data points $\left\{h_{i} \mid i=0, \ldots, N-1\right\}$
$\Longleftrightarrow N$ independent complex Fourier components

$$
\left\{\widehat{h}_{k} \mid k=0, \ldots, N-1\right\} \text { or }\left\{\widehat{h}_{k} \left\lvert\, k=-\frac{N}{2}\right., \ldots, \frac{N}{2}-1\right\}
$$

h_{0}	h_{1}	h_{2}	h_{3}	h_{4}	h_{5}	h_{6}	h_{7}
\hat{h}_{0}	\hat{h}_{1}	\hat{h}_{2}	\hat{h}_{3}	\hat{h}_{-4}	\hat{h}_{-3}	\hat{h}_{-2}	\hat{h}_{-1}

- For real data, symmetry of FT means $\widehat{h}_{k}=\widehat{h}_{-k}^{*}=\widehat{h}_{N-k}^{*}$ N real data points $\left\{h_{i} \mid i=0, \ldots, N-1\right\} \Longleftrightarrow$
- 2 real Fourier cmpts $\widehat{h}_{0} \& \widehat{h}_{N / 2}$
- $\frac{N}{2}-1$ indep cmplx Fourier cmpts $\left\{\widehat{h}_{k} \mid k=1, \ldots, \frac{N}{2}-1\right\}$

h_{0}	h_{1}	h_{2}	h_{3}	h_{4}	h_{5}	h_{6}	h_{7}
\hat{h}_{0}	\hat{h}_{1}	\widehat{h}_{2}	\hat{h}_{3}	\hat{h}_{4}	$\left[\hat{h}_{3}^{*}\right]$	$\left[\hat{h}_{2}^{*}\right]$	$\left[\hat{h}_{1}^{*}\right]$

- These assume N even; modification for odd N straightforward

Time and Frequency Resolution

- Recall correspondence between continuous \& discrete FT:

$$
h_{j}=h\left(t_{0}+j \delta t\right) \quad \Longleftrightarrow \quad \widehat{h}_{k} \delta t \sim \widetilde{h}\left(f_{k}\right)
$$

where

$$
f_{k}=k \delta f \quad \delta f=\frac{1}{N \delta t} \equiv \frac{1}{T}
$$

Time and Frequency Resolution

- Recall correspondence between continuous \& discrete FT:

$$
h_{j}=h\left(t_{0}+j \delta t\right) \quad \Longleftrightarrow \quad \widehat{h}_{k} \delta t \sim \widetilde{h}\left(f_{k}\right)
$$

where

$$
f_{k}=k \delta f \quad \delta f=\frac{1}{N \delta t} \equiv \frac{1}{T}
$$

- Aside: why not factor $\frac{1}{N}=\delta t \delta f$ \& define DFT as $\widetilde{h}_{k} \equiv \widehat{h}_{k} \delta t$

$$
\tilde{h}_{k}=\delta t \sum_{j=0}^{N-1} h_{j} e^{-i 2 \pi j k / N} \Longleftrightarrow h_{j}=\delta f \sum_{k=-N / 2}^{N / 2-1} \widetilde{h}_{k} e^{i 2 \pi j k / N} ?
$$

Time and Frequency Resolution

- Recall correspondence between continuous \& discrete FT:

$$
h_{j}=h\left(t_{0}+j \delta t\right) \quad \Longleftrightarrow \quad \widehat{h}_{k} \delta t \sim \widetilde{h}\left(f_{k}\right)
$$

where

$$
f_{k}=k \delta f \quad \delta f=\frac{1}{N \delta t} \equiv \frac{1}{T}
$$

- Aside: why not factor $\frac{1}{N}=\delta t \delta f \&$ define DFT as $\widetilde{h}_{k} \equiv \widehat{h}_{k} \delta t$

$$
\widetilde{h}_{k}=\delta t \sum_{j=0}^{N-1} h_{j} e^{-i 2 \pi j k / N} \Longleftrightarrow h_{j}=\delta f \sum_{k=-N / 2}^{N / 2-1} \widetilde{h}_{k} e^{i 2 \pi j k / N} ?
$$

$\left\{\widehat{h}_{k}\right\}$ involves only data $\left\{h_{j}\right\} ;\left\{\widetilde{h}_{k}\right\}$ mixes in additional metadata δt

Time and Frequency Resolution

- Recall correspondence between continuous \& discrete FT:

$$
h_{j}=h\left(t_{0}+j \delta t\right) \quad \Longleftrightarrow \quad \widehat{h}_{k} \delta t \sim \widetilde{h}\left(f_{k}\right)
$$

where

$$
f_{k}=k \delta f \quad \delta f=\frac{1}{N \delta t} \equiv \frac{1}{T}
$$

- N time points represent duration of $T=N \delta t$
- If freq indices are $-\frac{N}{2} \leq k \leq \frac{N}{2}-1$ (complex) or $0 \leq k \leq \frac{N}{2}$ (real), then $\left|f_{k}\right| \leq \frac{N \delta f}{2}=\frac{1}{2 \delta t} \equiv f_{\mathrm{Ny}}$.
- The Nyquist frequency f_{Ny} is half the sampling rate $\frac{1}{\delta t}$ \& is the largest independent frequency represented in the DFT

Sampling and Aliasing

- $\widehat{h}_{N+k}=\widehat{h}_{k}$, but we said $\widehat{h}_{k} \delta t \sim \widetilde{h}\left(f_{k}\right)$
and in general $\widetilde{h}\left(f_{N+k}\right) \neq \widetilde{h}\left(f_{k}\right)$. Actually
$\widehat{h}_{k} \delta t \approx \cdots+\widetilde{h}\left(f_{-N+k}\right)+\widetilde{h}\left(f_{k}\right)+\widetilde{h}\left(f_{N+k}\right)+\widetilde{h}\left(f_{2 N+k}\right)+\cdots$
- If sampled time series had Fourier cmpts $w /|f|>f_{N / 2}=f_{N y}$, those will be aliased with data in the range $-f_{\mathrm{Ny}} \leq f \leq f_{\mathrm{Ny}}$
- Generally low-pass filter time series to discard $|f|>f_{\mathrm{Ny}}=\frac{1}{2 \delta t}$ content before sampling at rate $\frac{1}{\delta t}$
- Alternately, if data already band-limited ($\widetilde{h}(f)=0$ for $|f|>B)$ avoid aliasing by choosing δt so $f_{\mathrm{Ny}}>B$ i.e., $\frac{1}{\delta t}>2 B$ Confusingly, $2 B$ is sometimes called the "Nyquist rate"

Illustration of Aliasing

Illustration of Aliasing

Illustration of Aliasing

The Fast Fourier Transform

- Naïve implementation of discrete FT as

$$
\widehat{h}_{k}=\sum_{j=0}^{N-1}\left(e^{-i 2 \pi / N}\right)^{k j} h_{j}
$$

would require $\mathcal{O}\left(N^{2}\right)$ ops \& not be any faster than convolution

$$
g_{j}=\sum_{m=0}^{N-1} A_{j-m} h_{m}
$$

- Fast Fourier Transform (FFT) algorithms
[Tukey \& Cooley 1965] cut that to $\mathcal{O}(N \log N)$ by writing

$$
N \text {-pt FT } \equiv \text { two } N / 2 \text {-pt FTs } \equiv \text { four } N / 4 \text {-pt FTs } \equiv \cdots
$$

- Speedup is greatest for $N=$ power of 2 , but products of small prime factors are generally good
- Popular/fast GPLed implementation is FFTW

Exercise

- For $N=16$, generate the discrete time series

$$
h_{j}=\cos \frac{3 \pi(j-2)}{8}
$$

- Use an FFT routine to transform it \& examine resulting \widehat{h}_{k}
- Apply an inverse FFT routine to $\widetilde{h}_{k} \&$ compare results to h_{j}
- Use the angle sum formula to write h_{j} as a linear combination of $\cos \frac{3 \pi j}{8}=\frac{e^{i 3 \pi j / 8}+e^{-i 3 \pi j / 8}}{2}$ and $\sin \frac{3 \pi j}{8}=\frac{e^{i 3 \pi j / 8}-e^{-i 3 \pi j / 8}}{2 i}$ and therefore as a linear combination of $e^{ \pm i 3 \pi j / 8}$ and compare the coëfficients to the components of the discrete Fourier transform.

Grant Tremblay's PhD Defense

Time 11:30
Location Carlson Auditorium, 76-1125
Title "Feedback-Regulated Star Formation in Cool Core Clusters of Galaxies"

