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0 Introduction

0.1 Motivation

We continue our study of inferential statistics, which allow us
to define procedures where the content of a random sample tells
us something about the unknown parameters of the underlying
probability distribution. For example, if we know that a ran-
dom sample is drawn from a normal distribution with a known
standard deviation σ and an unknown mean µ, we can make a
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rule that says for this random sample, construct an interval of a
specified width centered on the sample mean, and this interval
will have a 95% probability of containing the true population
mean µ. This is known as a confidence interval for µ.

As a specific example where this might be useful, when GPS
was introduced back in the 20th century, the government added
some random errors into the reported position, for national se-
curity purposes. So for example, if you put a GPS receiver on
top of your house and attempted to measure the elevation above
sea level, the GPS would return the true value plus a random er-
ror with a standard deviation of about 50 meters. This random
error varied from day to day, so you could get a more accurate
measurement by averaging together multiple measurements. If
you took, say, 25 measurements, and used their sample mean
to construct a 95% confidence interval on your elevation, there
would be a 95% chance your interval included the true elevation,
a 2.5% chance the whole interval was above the true elevation,
and a 2.5% chance that it was below.

0.2 Reminder of Notation

If Z is a standard normal random variable,

P (Z > zα) = α (0.1)

so

1− α = P (Z ≤ zα) = Φ(zα) (0.2)

Note that because the standard normal distribution is symmet-
ric,

Φ(−zα) = 1− Φ(zα) = α (0.3)

1 Confidence Intervals Using Stan-

dard Normal Percentiles

1.1 Confidence Interval for the Mean of a
Normal Population with Known Variance

Suppose {Xi} is a random sample of size n drawn from a dis-
tribution of mean µ and standard deviation σ. (I.e., for each i,
E(Xi) = µ and V (Xi) = σ2.) You showed in MATH 251 that
the sample mean

X =
1

n

n∑
i=1

Xi (1.1)

has mean E(X) = µ and variance V (X) = σ2/n. You also saw
that it is normally distributed under the following conditions:
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1. Exactly, if the underlying probability distribution from
which each Xi is drawn is a normal distribution.

2. Approximately, for large n, by the Central Limit Theorem.

If one of those conditions holds, we can define the (approxi-
mately, in the latter case) standard normal random variable

Z =
X − µ
σ/
√
n

(1.2)

Given a value α between 0 and 1, we can construct an interval
that Z has a probability 1 − α of landing in. If we put the
boundaries of the interval at ±zα/2 we find

P (Z < −zα/2) = Φ(−zα/2) = α/2 (1.3a)

P (−zα/2 < Z < zα/2) = Φ(zα/2)− Φ(−zα/2) =
(

1− α

2

)
− α

2
= 1− α

(1.3b)

P (zα/2 < Z) = 1− Φ(zα/2) = 1−
(

1− α

2

)
= α/2 (1.3c)

For example, taking α = 0.05, since Φ(1.96) ≈ 0.9750 ≈ 0.975
and therefore z0.025 ≈ 1.96,

• Z has a 2.5% chance of lying below −1.96

• Z has a 95% chance of lying between −1.96 and 1.96

• Z has a 2.5% chance of lying above 1.96

This has an interesting application to the situation where we
know σ but not µ. We already know that X can be used to
estimate µ, but now we can construct an interval which has a
good chance of containing µ as follows:

1− α = P (−zα/2 < Z < zα/2) = P

(
−zα/2 <

X − µ
σ/
√
n
< zα/2

)
= P

(
−zα/2

σ√
n
< X − µ < zα/2

σ√
n

)
= P

(
−X − zα/2

σ√
n
< −µ < −X + zα/2

σ√
n

)
= P

(
X + zα/2

σ√
n
> µ > X − zα/2

σ√
n

)
= P

(
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

)
(1.4)

The interpretation of this is a bit tricky: it’s tempting to look
at

P

(
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

)
= 1− α (1.5)

or, specifically

P

(
X − 1.96

σ√
n
< µ < X + 1.96

σ√
n

)
≈ 0.95 (1.6)
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and think that if I take a sample, find x, and construct the
interval (x− 1.96 σ√

n
, x+ 1.96 σ√

n
), that I can say there’s a 95%

probability that µ lies in that interval. This is wrong, though,
since we constructed the interval in a frequentist picture in which
X is a random variable, not µ. From this perspective, the value
of µ, while it may not be known to us, is not random, and
we’re really not talking about the probability for µ to take on
a particular value. Rather, we’re saying that whatever the true,
unknown value of µ is, if we collect a sample {xi} of size n and
construct an interval (x − 1.96 σ√

n
, x + 1.96 σ√

n
), it has a 95%

chance of bracketing that true value.

1.2 Aside: Bayesian Statistics and Probabil-
ity Theory

As an aside, this is not the only possible way to do things.
There are situations (e.g., observational rather than experimen-
tal sciences) where you can’t necessarily repeat the collection of
a sample and take another shot at your confidence interval. In
that case, there really is one set of values {xi} and you would
like to state something about your degree of belief in different
possible values of µ. We can still cast all of this in the language
of random variables if we want, as follows. Suppose we can as-
sign a probability distribution to the value of µ, and represent
it by a random variable M (M is an uppercase µ.) Given a value
µ for M, we construct a random sample {Xi} of size n using
a normal distribution with that µ, and then construct X from
that sample (so it’s doubly-random in that case). We’ve seen
that

P

(
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

∣∣∣∣M = µ

)
= 1− α (1.7)

We could ask instead, suppose we do the whole experiment and
find that X equals some specific value x. We could then ask for

an interval I(x) such that1

P
(
M ∈ I(x)|X = x

)
= 1− α (1.8)

The details are beyond the scope of this course, but you can
get a flavor of it by thinking about a simpler case where X and
M are discrete random variables. Then, the usual frequentist
probabilities are written in terms of some specific value µ and
correspond to

P (X = x|M = µ) (1.9)

but if we’ve done the experiment and have a specific x, we’d
really like to talk about

P (M = µ|X = x) (1.10)

But this is just the sort of situation that Bayes’s theorem was
meant to handle. We can write

P (M = µ|X = x) =
P (X = x|M = µ)P (M = µ)

P (X = x)
(1.11)

This is the bread and butter of Bayesian probability (which De-
vore rather dismissively refers to as “subjective probability”).
There are complications, notably in deciding what to assign as
the prior probability distribution P (M = µ), but it does allow
you to actually talk about the probabilities of things you’re in-
terested in.

1.3 Sample Size Determination

Given a sample of size n, we see that the width of the interval
we construct at confidence level (1− α) will be

w = 2zα/2
σ√
n

(1.12)

1Actually, since you want to use all the information in the data, what
you’re looking for is P (M ∈ I({xi})|{Xi = xi}) = 1− α.
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Often, though, we’ll be in a position of being able to collect a
bigger sample (possibly at greater expense) and therefore we’d
like to know how big the sample should be to correspond to a
certain width. If we know σ, and our desired confidence level,
we require

σ√
n

=
w

2zα/2
(1.13)

i.e.,
√
n = 2zα/2

σ

w
(1.14)

or

n =
(

2zα/2
σ

w

)2
(1.15)

1.4 One-sided Intervals

The confidence interval

P

(
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

)
= 1− α (1.16)

is called a two-sided interval because the probability α for µ to
lie inside the interval is split up, with a probability of α/2 that it
lies below and α/2 that it lies above. It’s also possible to define
a one-sided interval with all of the probability on one side. For
example,

P

(
µ < X + zα

σ√
n

)
= 1− α (1.17)

is an upper limit at confidence level 1− α and

P

(
X − zα

σ√
n
< µ

)
= 1− α (1.18)

is a lower limit at confidence level 1− α.

1.5 General Formalism

A bit of notation is needed to generalize this prescription. We
said that X could be used to estimate µ. It is sometimes called
an estimator µ̂ where the hat means “estimator” and we write
it in blue to emphasize that it’s a random variable.

If we want to talk about a general parameter, the convention
is to call that parameter θ. (In this case θ is just µ).

Given a random sample {Xi}, we construct a random variable
(statistic) h({Xi}; θ) whose probability distribution doesn’t de-

pend on µ. (In this case h({Xi}; θ) is h({Xi};µ) = X−µ
σ/
√
n
, which

obeys a standard normal distribution independent of the value
of µ.)

The ends of the confidence interval on h({Xi}; θ) are defined
by

P
(
h({Xi}; θ) < a

)
= α/2 (1.19a)

P
(
b < h({Xi}; θ)

)
= α/2 (1.19b)

so that
P
(
a < h({Xi}; θ) < b

)
= 1− α (1.20)

(In this case, a is −zα/2 and b is zα/2.)
The next step is to convert (if possible) the bounds on

h({Xi}; θ) to bounds on θ itself,

P
(
θ < l({Xi})

)
= α/2 (1.21a)

P
(
u({Xi}) < θ

)
= α/2 (1.21b)

so that the lower and upper bounds l({Xi}) and u({Xi}) have a
probability α of bracketing the true parameter value θ. (In this
case, l({Xi}) is X − zα/2 σ√

n
and u({Xi}) is X + zα/2

σ√
n
.)

Practice Problems

7.1, 7.5, 7.7, 7.15, 7.19, 7.23, 7.26
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Thursday 8 September 2016

1.6 Confidence Interval for the Population
Proportion

We can apply this method to estimation of the proportion of a
large population satisfying some property, i.e., the parameter p
of a binomial distribution. If X ∼ Bin(n, p), we can also think
of X as being the sum X =

∑n
i=1Bi of n Bernoulli random vari-

ables {Bi} obeying P (Bi = 1) = p; P (Bi = 0) = 1− p ≡ q. We
know that X has mean E(X) = np and variance V (X) = npq
and that for np & 10 and nq & 10, the binomial distribution
associated with X is reasonably approximated by a normal dis-
tribution. This means that if we construct the random variable

X − np
√
npq

(1.22)

then

1− α ≈ P

(
−zα/2 <

X − np
√
npq

< zα/2

)
= P

(
−zα/2 <

p̂− p√
p(1− p)/n

< zα/2

) (1.23)

where we’ve defined the estimator p̂ = X/n. To get an interval
for the parameter p, we want to solve for p at the endpoints.
Squaring the relation at either end of the interval gives

(p̂− p)2

p(1− p)/n
= z2α/2 (1.24)

which can be converted into the quadratic equation(
1−

z2α/2
n

)
p2 − 2

(
p̂+

z2α/2
n

)
+
p̂2

n
= 0 (1.25)

Using the quadratic formula and a bit of algebra, we can find
the roots

p± =
p̂+

z2
α/2

2n
± zα/2

√
p̂(1−p̂)
n

+
z2
α/2

4n2

1 +
z2
α/2

n

(1.26)

which gives the confidence interval on the parameter p (the pop-
ulation proportion)

P (p− < p < p+) ≈ 1− α . (1.27)

You might have asked, if we’re approximating the binomial dis-
tribution by a normal distribution anyway, why can’t we just
take p̂± zα/2

√
p̂(1− p̂)/n as the CI limits? Unfortunately, that

requires n to be rather large, and so it’s best to use the more
complicated limits given in (1.26). (You don’t need to memorize
the form of this, but you should write it on your formula sheet
for the exams.)

2 Confidence Intervals When the

Variance is Estimated

2.1 Large-Sample Intervals

Recall that last time we saw that given a random sample {Xi}
with known variance σ2 = V (Xi), we could construct the ran-
dom variable

Z =
X − µ
σ/
√
n

; (2.1)

If we can state that this is a standard normal random variable,
either because the underlying {Xi} are known to be normally-
distributed random variables, or approximately by virtue of the
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Central Limit Theorem, we can use it to set a confidence interval
on the unknown value of µ:

1− α = P (−zα/2 < Z < zα/2)

= P

(
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

)
(2.2)

What do we do if σ is also unknown? Well, we know that the
sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (2.3)

is an estimator for the variance σ2, so what if we construct

X − µ
S/
√
n

? (2.4)

If we’re relying on the central limit theorem to make this approx-
imately Gaussian for large n, it all basically works as before, and
you can set a confidence interval (X−zα/2 S√

n
, X+zα/2

S√
n
) which

has a 1−α chance of containing µ. The catch is that, since we’re
adding randomness by using S instead of σ, we require n & 40
rather than 30.

2.2 The t-Distribution

If n is not large, but {Xi} are iid normally-distributed random
variables with unknown µ and σ, we can construct a random
variable

T =
X − µ
S/
√
n

(2.5)

This is not a standard normal random variable; it obeys some-
thing called a t-distribution, also known as a Student’s2 t-

2“Student” was the pen name of statistician William Sealy Gosset.

distribution, with n− 1 degrees of freedom. Devore never actu-
ally writes down the probability distribution function; you don’t
need to memorize it, but in case you want to play around with
plotting it, it’s

fT (t;n− 1) ∝
(

1 +
t2

n− 1

)−n/2
(2.6)

If you really want to know, with the proportionality constant
written out it’s

fT (t; ν) =
Γ([ν + 1]/2)√
νπΓ(ν/2)

(
1 +

t2

ν

)−[ν+1]/2

(2.7)

Note that the number of degrees of freedom (df) is ν = n−1; this
sort of makes sense, because when n = 1, we can’t define S, and
the whole thing goes haywire. Note also that as ν or equivalently
n becomes large, the distribution does tend towards a standard
normal distribution:

lim
n→∞

fT (t;n− 1) ∝ lim
n→∞

(
1 +

t2

n− 1

)−n/2
= lim

n→∞

[(
1 +

t2

n

)n]−1/2
=
(
et

2
)−1/2

= e−t
2/2 (2.8)

Here’s what the t distribution looks like for various values of
ν = n− 1:
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By analogy to the definition of zα, we define tα,ν (known as the
t critical value) by P (T > tα,ν) = 1− FT (tα,ν ; ν) = α

This means that

1− α = P (−tα/2,n−1 < T < tα/2,n−1)

= P

(
−tα/2,n−1 <

X − µ
S/
√
n
< tα/2,n−1

)
(2.9)

and by the same manipulation as before

P

(
X − tα/2,n−1

S√
n
< µ < X + tα/2,n−1

S√
n

)
= 1− α (2.10)

2.3 Prediction Intervals

So far we’ve used confidence intervals to make statements about
the parameters of the underlying distribution, given properties
of a sample drawn from that distribution. Instead, we could
try to construct an interval with, say, a 95% chance of contain-
ing another value drawn from that distribution. Specifically, if
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X1, . . . , Xn, Xn+1 are iid random variables, we can try to make
predictions about the n + 1st variable based on the first n. Of
course, the best estimator for Xn+1 which we can construct from
X1, . . . , Xn is

X =
1

n

n∑
i=1

Xi (2.11)

The error we make with that guess has mean

E(X −Xn+1) = E(X)− E(Xn+1) = µ− µ = 0 (2.12)

and variance

V (X −Xn+1) = V (X) + V (Xn+1) = σ2/n+ σ2 =

(
1 +

1

n

)
σ2

(2.13)
If the underlying distribution for each Xi is normal, then X −
Xn+1, being a linear combination of normal random variables,
is normal, and

Z =
X −Xn+1 − 0

σ
√

1 + 1
n

(2.14)

is a standard normal random variable.
If we don’t know σ ahead of time, we can use the sample

variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (2.15)

calculated from the first n random variables and construct

T =
X −Xn+1

S
√

1 + 1
n

. (2.16)

This turns out to once again obey a t distribution with ν = n−1

degrees of freedom, and therefore we can say

P

(
X − tα/2,n−1 S

√
1 +

1

n
< Xn+1 < X + tα/2,n−1 S

√
1 +

1

n

)
= 1− α (2.17)

and, given a sample {xi} of size n, construct the prediction in-
terval

x± tα/2,n−1 s
√

1 +
1

n
(2.18)

for xn+1 at “prediction level” (1− α)× 100%.

Note that prediction intervals are wider than confidence inter-
vals in general; in particular when n becomes large, the width of
a confidence interval goes to zero, but the width of the prediction
interval goes to 2zα/2s.

2.4 Tolerance Intervals

One more type of interval to consider is a tolerance interval. This
is constructed, based on a sample with mean x and standard
deviation s, to have a (1− α)× 100% chance of containing k%
of the area of the underlying probability distribution. This is
a complicated construction, and for our purposes, it’s simply
treated as a black box with an associated table in the appendix.
It’s mostly a matter of understanding the definition.

Practice Problems

7.29, 7.35, 7.37, 7.41
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Tuesday 13 September 2016

3 Confidence Interval for the Vari-

ance of a Normal Population

So far, we’ve considered confidence intervals on the mean (or in
one case, the proportion) of a distribution. Finally, let’s consider
how to set a confidence interval on the variance of the normal
distribution from which we’ve drawn a sample. We know that
the sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (3.1)

can be used to estimate the variance, since

E(S2) = σ2 (3.2)

We can set up a confidence range for σ2 by considering the ratio

S2

σ2
=

1

n− 1

n∑
i=1

(Xi −X)2

σ2
(3.3)

Now, since
Xi − µ
σ

(3.4)

is a standard normal random variable, we know

n∑
i=1

(Xi − µ)2

σ2
(3.5)

obeys a chi-square distribution with n degrees of freedom (df).
If we use the sample mean X instead of the population mean µ,
we get

n∑
i=1

(Xi −X)2

σ2
=

(n− 1)S2

σ2
(3.6)

which turns out to obey a χ2 distribution with ν = n− 1 df.

So we need to set intervals for a chi-square random variable.
Just as we defined zα and tα,ν as the left edge of an area α under
the pdf for a standard normal rv and a t-distribution with ν df,
respectively, we define χ2

α,ν as the corresponding quantity for a
chi-square distribution with ν degrees of freedom:

1√
2π

∫ ∞
zα

e−z
2/2 dz = 1− Φ(zα) = α (3.7a)

Γ([ν + 1]/2)√
νπΓ(ν/2)

∫ ∞
tα,ν

(
1 +

t2

ν

)−[ν+1]/2

dt = 1− FT (tα,ν ; ν) = α

(3.7b)

1

2ν/2Γ(ν/2)

∫ ∞
χ2
α,ν

x(ν/2)−1e−x/2 dx = 1− F
(
χ2
α,ν

2
;
ν

2

)
= α

(3.7c)
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where we’ve written the cdf for the chi-square distribution in
terms of the standard Gamma cdf F (x;α). In practice each of
these three values–zα, tα,ν , χ

2
α,ν–is tabulated.

So, having defined the chi-squared critical value χ2
α,ν , we want

to split up the area under the chi-squared distribution into the
first α/2, the middle 1−α, and the last α/2. The one complica-
tion is that, since the chi-squared distribution is not symmetric
like the standard normal and t distributions were, we have to
handle the lower limit more carefully. If we want a value so
that α/2 of the area under the curve lies to the left of it, then
1 − α/2 lies to the right, and we have χ2

1−α/2,ν and χ2
α/2,ν as

our α× 100th and (1− α)× 100th and percentiles. The lack of
symmetry means

χ2
1−α/2,ν 6= −χ2

α/2,ν (3.8)

(In fact, both χ2
1−α/2,ν and χ2

α/2,ν must be positive.)

The interval containing the middle 1− α of probability is thus

1− α = P

(
χ2
1−α/2,n−1 <

n∑
i=1

(Xi −X)2

σ2
< χ2

α/2,n−1

)

= P

(
χ2
1−α/2,n−1 <

(n− 1)S2

σ2
< χ2

α/2,n−1

)
= P

(
(n− 1)S2

χ2
α/2,n−1

< σ2 <
(n− 1)S2

χ2
1−α/2,n−1

) (3.9)

and, if we prefer to write a confidence interval for the standard
deviation,

P

(√
(n− 1)S2

χ2
α/2,n−1

< σ <

√
(n− 1)S2

χ2
1−α/2,n−1

)
= 1− α (3.10)

Practice Problems

7.43, 7.45, 7.55
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4 Summary of Confidence Intervals

4.1 For Normal Random Samples

At confidence level (1− α)× 100%:

known unknown variable lower upper

σ µ x− zα/2 σ√
n

x+ zα/2
σ√
n

σ µ x− zα σ√
n

∞
σ µ −∞ x+ zα

σ√
n

σ µ x− tα/2,n−1 s√
n

x+ tα/2,n−1
s√
n

σ µ x− tα,n−1 s√
n

∞
σ µ −∞ x+ tα,n−1

s√
n

µ σ s

√
(n−1)

χ2
α/2,n−1

s

√
(n−1)

χ2
1−α/2,n−1

µ σ s
√

(n−1)
χ2
α,n−1

∞

µ σ 0 s
√

(n−1)
χ2
1−α,n−1

4.2 Approximate Confidence Intervals for Large Samples

At approximate level (1− α)× 100%:

Distribution variable lower upper

general µ x− zα/2 s√
n

x+ zα/2
s√
n

general µ x− zα s√
n

∞
general µ −∞ x+ zα

s√
n

Bernoulli/Binomial p
p̂+

z2
α/2
2n
−zα/2

√
p̂(1−p̂)
n

+
z2
α/2

4n2

1+
z2
α/2
n

p̂+
z2
α/2
2n

+zα/2

√
p̂(1−p̂)
n

+
z2
α/2

4n2

1+
z2
α/2
n
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