Statistical Intervals Based on a Single Sample
(Devore Chapter Seven)

MATH-252-01: Probability and Statistics IT*

Contents

0__Introduction| 1
(0.1 Motivation|. . . . . . . . . .. ... 1
0.2 Reminder of Notation|. . . . .. . ... ... ... 2

(1 Confidence Intervals Using Standard Normal Per- |

[_centiled 2
(.1 Confidence Interval for the Mean of a Normal |

| Population with Known Variancel . . . . . . . .. 2
(1.2 Aside: Bayesian Statistics and Probability Theory| 4
(1.3 Sample Size Determination|. . . . . . . . . . ... 4
(1.4 One-sided Intervalsl . . . . .. ... ... .. ... 5
[L5  General Formalisml . . ... ... ... ... ... 5

[_mated 6
[2.1 Large-Sample Intervals| . . . . . . ... ... ... 6
2.2 The t-Distributionl . . . . ... ... .. ... .. 7
2.3 Prediction Intervalsf . . . . . . . ... .. ... 8

*Copyright 2016, John T. Whelan, and all that

Fall 2016

2.4 Tolerance Intervals . . . . . . ... ... ..... 9
3__Confidence Interval for the Variance of a Normal |
[  Population| 10
[4 Summary of Confidence Intervals| 12

4.1  For Normal Random Samples . . . . . . ... .. 12

4.2 Approximate Confidence Intervals for Large Sam- |
.......................... 12

Tuesday 6 September 2016
0 Introduction

0.1 Motivation

We continue our study of inferential statistics, which allow us
to define procedures where the content of a random sample tells
us something about the unknown parameters of the underlying
probability distribution. For example, if we know that a ran-
dom sample is drawn from a normal distribution with a known
standard deviation ¢ and an unknown mean p, we can make a



rule that says for this random sample, construct an interval of a
specified width centered on the sample mean, and this interval
will have a 95% probability of containing the true population
mean p. This is known as a confidence interval for p.

As a specific example where this might be useful, when GPS
was introduced back in the 20th century, the government added
some random errors into the reported position, for national se-
curity purposes. So for example, if you put a GPS receiver on
top of your house and attempted to measure the elevation above
sea level, the GPS would return the true value plus a random er-
ror with a standard deviation of about 50 meters. This random
error varied from day to day, so you could get a more accurate
measurement, by averaging together multiple measurements. If
you took, say, 25 measurements, and used their sample mean
to construct a 95% confidence interval on your elevation, there
would be a 95% chance your interval included the true elevation,
a 2.5% chance the whole interval was above the true elevation,
and a 2.5% chance that it was below.

0.2 Reminder of Notation

If Z is a standard normal random variable,
P(Z > z,) =« (0.1)

l—a=P(Z < z,) =P(24) (0.2)

Note that because the standard normal distribution is symmet-
ric,

D(—24)=1—D(z) = (0.3)

1 Confidence Intervals Using Stan-
dard Normal Percentiles

1.1 Confidence Interval for the Mean of a

Normal Population with Known Variance
Suppose {X;} is a random sample of size n drawn from a dis-
tribution of mean p and standard deviation o. (IL.e., for each 1,

E(X;) = p and V(X;) = 02.) You showed in MATH 251 that
the sample mean

1<
n; (1.1)

has mean E(X) = p and variance V(X) = 0%/n. You also saw
that it is normally distributed under the following conditions:



1. Exactly, if the underlying probability distribution from
which each X, is drawn is a normal distribution.
2. Approximately, for large n, by the Central Limit Theorem.

If one of those conditions holds, we can define the (approxi-
mately, in the latter case) standard normal random variable

X—up
Z=—— 1.2
o (1.2)
Given a value o between 0 and 1, we can construct an interval
that Z has a probability 1 — a of landing in. If we put the

boundaries of the interval at £z,/, we find

P(Z < —z4)2) = ®(—24/2) = /2 (1.3a)

P(=2a/2 < Z < zaj2) = P(2as2) — P(—2ay2) = (1 — %) — % =1—«
(1.3b)
Plajp < Z) =1— ®(zap) =1 — (1 - %) —a/2  (13c)

—Za/2 0 a2

For example, taking a = 0.05, since ®(1.96) ~ 0.9750 ~ 0.975
and therefore zg g25 ~ 1.96,

e 7 has a 2.5% chance of lying below —1.96
e 7 has a 95% chance of lying between —1.96 and 1.96
e 7 has a 2.5% chance of lying above 1.96

This has an interesting application to the situation where we
know o but not u. We already know that X can be used to
estimate p, but now we can construct an interval which has a
good chance of containing u as follows:

X —p
l—a=P(—242 < Z < zZyp) =P —2upn < —— < 24
Q@ (—Zay2 Za/2) (z/g YN 2/2)

g — g
:P(—ZQ/QE<X—M<ZQ/2%)

— o — o
P <—X - Za/2% < —p < =X+ Zas ﬁ)

— o — o
—P<X+ZQ/QW>M>X—ZO¢/2%>

I g [ g
:P(X—Za/2%<M<X+Za/2%>

(1.4)

The interpretation of this is a bit tricky: it’s tempting to look
at

p(y_za/%qﬁﬂa/z%):l_a (1.5)

or, specifically

_ o J— ag
PIX—-196—<u<X+19— | ~0.95 1.6
( N \/ﬁ) (1.6)



and think that if I take a sample, find Z, and construct the
interval (T — 1.96 7=, 7 + 1.96 %), that I can say there’s a 95%
probability that p lies in that interval. This is wrong, though,
since we constructed the interval in a frequentist picture in which
X is a random variable, not ;. From this perspective, the value
of u, while it may not be known to us, is not random, and
we're really not talking about the probability for u to take on
a particular value. Rather, we're saying that whatever the true,
unknown value of y is, if we collect a sample {z;} of size n and
construct an interval (Z — 1.96 =,7 + 1.96 %), it has a 95%

. v’ vn
chance of bracketing that true value.

1.2 Aside: Bayesian Statistics and Probabil-
ity Theory

As an aside, this is not the only possible way to do things.
There are situations (e.g., observational rather than experimen-
tal sciences) where you can’t necessarily repeat the collection of
a sample and take another shot at your confidence interval. In
that case, there really is one set of values {z;} and you would
like to state something about your degree of belief in different
possible values of . We can still cast all of this in the language
of random variables if we want, as follows. Suppose we can as-
sign a probability distribution to the value of pu, and represent
it by a random variable M (M is an uppercase u.) Given a value
p for M, we construct a random sample {X;} of size n using
a normal distribution with that g, and then construct X from
that sample (so it’s doubly-random in that case). We've seen
that

P(X = tun e < i <Xt zap e M=p) =1=a (17

We could ask instead, suppose we do the whole experiment and
find that X equals some specific value Z. We could then ask for

an interval Z(7) such that]
PMeI@X=72)=1-a (1.8)

The details are beyond the scope of this course, but you can
get a flavor of it by thinking about a simpler case where X and
M are discrete random variables. Then, the usual frequentist
probabilities are written in terms of some specific value p and
correspond to

P(X =7Z|M = pu) (1.9)

but if we've done the experiment and have a specific T, we’'d
really like to talk about

PM=pulX =7) (1.10)

But this is just the sort of situation that Bayes’s theorem was
meant to handle. We can write

P(X =7|M = p) P(M = p)
P(X =7)

This is the bread and butter of Bayesian probability (which De-

vore rather dismissively refers to as “subjective probability”).

There are complications, notably in deciding what to assign as

the prior probability distribution P(M = pu), but it does allow

you to actually talk about the probabilities of things you’re in-
terested in.

PM=puX=1)= (1.11)

1.3 Sample Size Determination

Given a sample of size n, we see that the width of the interval
we construct at confidence level (1 — a) will be

W= 224y —— (1.12)

vn

I Actually, since you want to use all the information in the data, what
you're looking for is P(M € Z({x; ) |{X: = z:}) =1 — a



Often, though, we’ll be in a position of being able to collect a
bigger sample (possibly at greater expense) and therefore we’d
like to know how big the sample should be to correspond to a
certain width. If we know o, and our desired confidence level,

we require
w

g
N (1.13)
ie.,
\/E:QZQ/Q% (1.14)
or
n= <22a/2 %)2 (1.15)

1.4 One-sided Intervals
The confidence interval

P(X—zap% <M<X—|—za/2%> —1-a  (116)
is called a two-sided interval because the probability a for p to
lie inside the interval is split up, with a probability of o/2 that it
lies below and «/2 that it lies above. It’s also possible to define
a one-sided interval with all of the probability on one side. For
example,

P<u<7+za%):1—a (1.17)

is an upper limit at confidence level 1 — a and

P(Y—za%<;¢):1—a (1.18)

is a lower limit at confidence level 1 — a.

1.5 General Formalism

A bit of notation is needed to generalize this prescription. We
said that X could be used to estimate y. It is sometimes called
an estimator [i where the hat means “estimator” and we write
it in blue to emphasize that it’s a random variable.

If we want to talk about a general parameter, the convention
is to call that parameter 6. (In this case 0 is just u).

Given a random sample { X}, we construct a random variable
(statistic) h({X;};#) whose probability distribution doesn’t de-
pend on p. (In this case h({X;};0) is h({X;}; 1) = ﬁ;\/’%, which
obeys a standard normal distribution independent of the value
of p.)

The ends of the confidence interval on h({X;};6) are defined
by

P(h({X;};0) <a) =a/2 (1.19a)
P(b < h({X;};0)) = a/2 (1.19b)

so that
Pla<h({X;};0) <b)=1-a (1.20)

(In this case, a is —2z4/2 and b is z4/2.)
The next step is to convert (if possible) the bounds on
h({X;};0) to bounds on 6 itself,

PO <1({Xi})) = /2 (1.21a)
Pu({X;}) <) = /2 (1.21Db)

so that the lower and upper bounds [({X;}) and u({X;}) have a
probability « of bracketing the true parameter value 6. (In this
case, [({X;}) is X — za/Q\/LE and u({X;}) is X + Za/g\/iﬁ.)

Practice Problems

7.1,75,7.7,7.15,7.19, 7.23, 7.26
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1.6 Confidence Interval for the Population
Proportion

We can apply this method to estimation of the proportion of a
large population satisfying some property, i.e., the parameter p
of a binomial distribution. If X ~ Bin(n,p), we can also think
of X as being the sum X = >""" | B, of n Bernoulli random vari-
ables {B;} obeying P(B;=1) =p; P(B;=0)=1—-p=gq. We
know that X has mean E(X) = np and variance V(X) = npq
and that for np 2 10 and ng 2 10, the binomial distribution
associated with X is reasonably approximated by a normal dis-
tribution. This means that if we construct the random variable

X —np

ALy

(1.22)

then

X —
1—04%13(—2&/2 < P <za/2>

v pq
o (1.23)
== P —Za/2 I e Za/2

( YTy )

where we've defined the estimator p = X /n. To get an interval
for the parameter p, we want to solve for p at the endpoints.
Squaring the relation at either end of the interval gives

R
(b= p) =22, (1.24)

p(1—p)/n

which can be converted into the quadratic equation

22 22 ~9
(1—“—/2>p2—2<p+ "/2>+p—:0 (1.25)
n n n

Using the quadratic formula and a bit of algebra, we can find
the roots
a P=P) | Zajz

:ﬁ+g_r/L2:tZ0‘/2 n 4n? (1 26)

P+ 22
14 2

which gives the confidence interval on the parameter p (the pop-
ulation proportion)

Pp-<p<pi)=l—a. (1.27)

You might have asked, if we're approximating the binomial dis-
tribution by a normal distribution anyway, why can’t we just
take p £ 24/2/D(1 — p)/n as the CI limits? Unfortunately, that
requires n to be rather large, and so it’s best to use the more
complicated limits given in . (You don’t need to memorize
the form of this, but you should write it on your formula sheet
for the exams.)

2 Confidence Intervals When the
Variance is Estimated

2.1 Large-Sample Intervals

Recall that last time we saw that given a random sample {X;}
with known variance o = V(X;), we could construct the ran-
dom variable

_X-p,
o/yn’
If we can state that this is a standard normal random variable,

either because the underlying {X;} are known to be normally-
distributed random variables, or approximately by virtue of the

Z (2.1)



Central Limit Theorem, we can use it to set a confidence interval
on the unknown value of u:

l—a=P(—242 < Z < Zaj2)

- o — o 2.2
:P<X_Za/2ﬁ<'u<X+Za/2%) ( )

What do we do if ¢ is also unknown? Well, we know that the
sample variance

52 = ni - ;(XZ- - X)? (2.3)

2

is an estimator for the variance o°, so what if we construct

X—u,
S/vn

If we're relying on the central limit theorem to make this approx-
imately Gaussian for large n, it all basically works as before, and
you can set a confidence interval (7—za /2 \%, X+z, /2 \%) which
has a 1—« chance of containing y. The catch is that, since we're
adding randomness by using S instead of o, we require n 2 40
rather than 30.

(2.4)

2.2 The t-Distribution

If n is not large, but {X;} are iid normally-distributed random
variables with unknown g and o, we can construct a random
variable o

X —p
- S/vn
This is not a standard normal random variable; it obeys some-
thing called a t-distribution, also known as a Student’{] ¢-

T

(2.5)

2“Student” was the pen name of statistician William Sealy Gosset.

distribution, with n — 1 degrees of freedom. Devore never actu-
ally writes down the probability distribution function; you don’t
need to memorize it, but in case you want to play around with
plotting it, it’s

Frltin — 1) x <1 Lt )W (2.6)

n—1

If you really want to know, with the proportionality constant
written out it’s

U o\ —[v+1]/2
fr(tv) = —I\‘/([y_ﬂ;(,lj]//;; (1 + %) (2.7)

Note that the number of degrees of freedom (df) is v = n—1; this
sort of makes sense, because when n = 1, we can’t define S, and
the whole thing goes haywire. Note also that as v or equivalently
n becomes large, the distribution does tend towards a standard
normal distribution:

2 —n/2
lim fr(t;n—1) o lim (1 - )
n—oo

n—00 n—1
t2 nq—1/2 —1/2
= lim [(1—{— —) ] = (et2) =2 (28)
n—00 n

Here’s what the t distribution looks like for various values of
v=n-—1:



T T ' I I I
v=1
'.‘/"g' - - =
,/.'.\'\. V=0
. - — =20
R4 A
o A I v = oo (normal)

fr(t;v)

By analogy to the definition of z,, we define t,, (known as the
t critical value) by P(T > t,,) =1— Fr(ta,;v) =«

frt;v)

This means that

l—a= P(—ta/z,n—l <T< ta/ln—l)

X —pu (2.9)
=P —tojon1 < —2 < tojon
R S

fr(t;v)

_ta/2,1/ 0 ta/Q,I/

and by the same manipulation as before

— S — S
P (X — ta/2,n71 % <pu< X +ta/2,n71 %) =1—«a (210)

2.3 Prediction Intervals

So far we’ve used confidence intervals to make statements about
the parameters of the underlying distribution, given properties
of a sample drawn from that distribution. Instead, we could
try to construct an interval with, say, a 95% chance of contain-
ing another value drawn from that distribution. Specifically, if



X, ..., Xy, X,,11 are iid random variables, we can try to make
predictions about the n + 1st variable based on the first n. Of
course, the best estimator for X, ; which we can construct from
Xi,..., X, 1s

— 1
X == X; 2.11
> 2
The error we make with that guess has mean
B(X = Xpi1) = B(X) = B(Xyp) =p—p=0  (212)

and variance

VX = X)) = VX)) + V(X)) =% /n+ 0% = (1 + %) o?

(2.13)
If the underlying distribution for each X; is normal, then X —
X, 11, being a linear combination of normal random variables,
is normal, and
B X-X,1-0

7 —
U,/1+%

is a standard normal random variable.
If we don’t know o ahead of time, we can use the sample
variance

(2.14)

n

S2 = ni - ;(Xi —X)? (2.15)

calculated from the first n random variables and construct

_Y_Xn+1
Sy/1+2

This turns out to once again obey a t distribution with v =n—1

T (2.16)

degrees of freedom, and therefore we can say

_ 1 - 1
P (X — tajam 1 ST+ = < Xpi1 < X +tajan 1 Sy/1+ —>
n n

=1—a (2.17)

and, given a sample {z;} of size n, construct the prediction in-

terval
_ 1
TEtaon-15\/1+— (2.18)
n

for 2,41 at “prediction level” (1 — «) x 100%.

Note that prediction intervals are wider than confidence inter-
vals in general; in particular when n becomes large, the width of
a confidence interval goes to zero, but the width of the prediction
interval goes to 2z,/25.

2.4 Tolerance Intervals

One more type of interval to consider is a tolerance interval. This
is constructed, based on a sample with mean T and standard
deviation s, to have a (1 — ) x 100% chance of containing k%
of the area of the underlying probability distribution. This is
a complicated construction, and for our purposes, it’s simply
treated as a black box with an associated table in the appendix.
It’s mostly a matter of understanding the definition.

Practice Problems

7.29, 7.35, 7.37, 7.41
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3 Confidence Interval for the Vari-
ance of a Normal Population

So far, we've considered confidence intervals on the mean (or in
one case, the proportion) of a distribution. Finally, let’s consider
how to set a confidence interval on the variance of the normal
distribution from which we’ve drawn a sample. We know that
the sample variance

52 = ni - ;(X,- - X)? (3.1)

can be used to estimate the variance, since
E(S?) = o? (3.2)

We can set up a confidence range for o by considering the ratio

52 1 &KX —X)?
o2 n—1 Z o2 (33)
i=1
Now, since
Xi—p
o
is a standard normal random variable, we know

En: (X —w)? (3.5)

: o?
=1

(3.4)

obeys a chi-square distribution with n degrees of freedom (df).
If we use the sample mean X instead of the population mean pu,
we get

Z (Xz ;2X> _ (n —021)5 (3.6)

10

which turns out to obey a x? distribution with v =n — 1 df.

I I I I !
V=25
- =10
- - v=15
N L
) . .
~— .
NX ./ >.,~\
S~ ’ Vi N N
. N
1 4 \, N
. N
’ / N N
’ / \. \\
s / N ~ \\
4 ~ =<
z el 1 L R R = =
0 5) 10 15 20 25 30
T

So we need to set intervals for a chi-square random variable.
Just as we defined 2, and ¢, as the left edge of an area a under
the pdf for a standard normal rv and a t-distribution with v df,
respectively, we define Xi,u as the corresponding quantity for a
chi-square distribution with v degrees of freedom:

1 0 2

S 20y =1-® - 3.7
e z Zg a (3.7a

%/Za () = a (3.72)

D) [ e
\/ﬁF(V/Q)/ <1+ V) dt_l FT<ta,uaV>_a

ta,u
(3.7b)
1 > X2, v
- - W/2)=lo=/2 g — 1 - F [ 22%. 2 ) =
SRENOIP) /sz c o ( 2 ’2) “
(3.7¢)



where we’ve written the cdf for the chi-square distribution in
terms of the standard Gamma cdf F(z;«a). In practice each of
these three values—2q, ta,., X5, s tabulated.

fo(x; V)

So, having defined the chi-squared critical value Xiy, we want
to split up the area under the chi-squared distribution into the
first /2, the middle 1 — «, and the last «/2. The one complica-
tion is that, since the chi-squared distribution is not symmetric
like the standard normal and t distributions were, we have to
handle the lower limit more carefully. If we want a value so
that /2 of the area under the curve lies to the left of it, then
1 — /2 lies to the right, and we have X%—a/Z,V and X2 ), as
our o X 100th and (1 — «) x 100th and percentiles. The lack of
symmetry means

X%—a/lu 7é _ch/Z,V (38)

(In fact, both xi_,,, and x2 ,, must be positive.)

11

N
5
i
- l -«
a/2 a/2
0 X?—a/?,y ng/Q,l/

T

The interval containing the middle 1 — « of probability is thus

=P (X%—a/ln—l < 2 < Xi/Z,n—l) (3.9)

o ((n—l)52 e (n—1)52>

2 2
Xa/2,n—1 Xi—a/2.n-1

and, if we prefer to write a confidence interval for the standard
deviation,

—1 SQ
P[5
Xa/2,n—1

Practice Problems

7.43,7.45, 7.55

—1 52



4 Summary of Confidence Intervals

4.1 For Normal Random Samples

At confidence level (1 — a) x 100%:

H known \ unknown H variable \ lower upper H
o I T —Zaj2 T+ Zap2
o I T — Zam 00
o 1 —00 T+ za\/iﬁ

o H T — ta/?,n—l\/iﬁ f+ta/27n—1\/ig

o % T — ta,n—l\/iﬁ &)

o I —00 T+ ta,n_l\/iﬁ
(n—1) (n—1)

H g 8\/Xi/2,n1 8\/X%a/2,n1
(n—1)

,u g 5 Xi n—1 o0

(n—1)
M 7 O S\/X%707n71

4.2 Approximate Confidence Intervals for Large Samples

At approximate level (1 — ) x 100%:

H Distribution H variable ‘ lower upper
general 0 T — Za/z\/iﬁ T+ za/g\/iﬁ
general 0 T — za\/iﬁ 00
general 0 —00 T+ za\/iﬁ

22/2 p(1—p) Z2/2 22/2 p(1—p) 22/2
~ « A « «
i ;n “Ra/2 %er P+ 50 TZa/2 %er

Bernoulli/Binomial D 5 22
1422 1422

12
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