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1 Samples, Statistics, and Estimators

1.1 (Frequentist) Statistical Inference

So far, our consideration of probabilities and random variables
has involved taking a known distribution and using it to calcu-
late the probabilities of various equations and inequalities for
random variables. Now we’re going to consider the case where
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we have some random variables X1, X2, etc, for which the prob-
ability distribution is at least partially unknown, and developing
a prescription that allows us to make some statements about the
unknown quantities, given a particular set of values X1 = x1,
X2 = x2, etc.

One possibility is that the probability distribution has some
unknown parameters, e.g., we have a Poisson distribution with
unknown mean, or Gamma distribution with unknown α and
β. If we call these parameters θ1, θ2, etc., and we combine the
observable random variables into a vector X and the parameters
into another vector θ, we have a probability distribution

fX(x;θ) (1.1)

(We’ve written this as a pdf for a continuous random vector, but
the formalism is similar if some or all of the random variables
are discrete.) This gives us the probability density at X = x,
for specific values of the parameters θ. The idea is that when
we perform the experiment, we get specific values x, and we can
then use fX(x;θ) to say something the value(s) of θ.

A case of particular interest is where the {Xi} are independent
and identically distributed, i.e., they form a random sample.
Then

fX(x;θ) =
∏

f(xi;θ) (1.2)

1.2 The Bayesian Point of View

The classical perspective, known as the frequentist interpreta-
tion, that we’re using here, is a bit odd. The sampling function
fX(x;θ) is not a distribution for values of θ; it’s a distribution
for x values, which happens to depend on the values of θ. This
makes it less than straightforward to infer something about θ
from the form of fX(x;θ) evaluated at the actual observed x, as
a function of θ.

On the other hand, the Bayesian approach treats the inher-
ently random realization x and the unknown parameters θ on
equal footing; both represent uncertainty or lack of knowledge.
The sampling function is thus better written f( x | θ ), a prob-
ability density for x given parameter values θ. (If you want to
think in the language of random variables, you could consider
a case where a meta-experimenter sets up the environment by
randomly choosing parameters θ, which are the realization of a
random vector Θ with some distribution fΘ(θ); we’ll suppress
all of these subscripts since we’ll know what quantities we’re
talking about from the arguments.) If your a priori knowledge
of the parameters θ is reflected by a probability distribution
f(θ), then we could think about the joint probability density to
have parameters θ and observed data x, which is

f(θ,x) = f( x | θ )f(θ) (1.3)

We’re interested in the a posteriori knowledge of θ, given that we
made the measurements x, which is a considitional probability:

f(θ | x ) =
f(θ,x)

f(x)
=
f( x | θ )f(θ)

f(x)
(1.4)

This is a form of Bayes’s theorem. The parts of it have names:

• f(θ) is the prior pdf for the parameters

• f(θ | x ) is the psoterior pdf for the parameters

• f( x | θ ) is the sampling function, which is also called the
likelihood function when we consider its θ dependence.

• The denominator f(x) =
∫
f( x | θ )f(θ) dθ is a normaliza-

tion factor.

There are two challenges which keep everyone from using the
Bayesian approach: first, there is the conceptual subtlety of
assigning probabilities to things which are only unknown and
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not the result of repeatable experiments. Second, we have to
make some determination of the starting point, the prior pdf
f(θ), which can be somewhat arbitrary.

1.3 Statistics and Estimators

Given a random sample (or any random vector) X, a statistic
T (X) is any function of the random variables {Xi}. The statistic
T (X) is itself a random variable; given a particular realization
(set of data/values) x of the random vector X, the statistic takes
on a numerical value T (x). Often, a statistic can be used to get
an estimate of one of the parameters. We say that T (X) is an
estimator for the parameter θ.

1.3.1 Unbiased (and Biased) Estimators

A statistic T (X) is called an unbiased estimator of the parameter
θ if E[T (X)] = θ. For example, we know that if X is a sample of
size n drawn from any distribution, the statistic X =

∑n
i=1Xi

satisfies E(X) = µ where E(Xi) = µ. So for example, given
a sample drawn from a N(µ, σ2) normal distribution, X is an
unbiased estimator of µ.

You may wonder why we’d ever use a biased estimator, but
bias is more insidious than you’d think. For example, consider
an exponential distribution with unknown parameter λ:

f(x;λ) = λe−λx 0 < x <∞ (1.5)

We know that 1
λ

is the expectation value of an exponential ran-

dom variable, so X is an unbiased estimator of 1
λ
. However, one

can show that 1
X

is a biased estimator of λ, because in general

E

(
1

X

)
6= 1

E(X)
(1.6)

In fact, we can calculate this expectation value for a sample of
size n drawn from an exponential distribution with parameter
λ:

E

(
1

X

)
=

∫ ∞
0

· · ·
∫ ∞
0

n

x1 + · · ·+ xn
λe−λx1 · · ·λe−λxn dx1 · · · dxn

= nλn
∫ ∞
0

· · ·
∫ ∞
0

1

x1 + · · ·+ xn
e−λ(x1+···+xn) dx1 · · · dxn

(1.7)

It’s possible, by changing variables from {xi} to {yi} where

yi = λ
i∑

j=1

xj (1.8)

so that the limits of the integrals are

0 < yi < yi+1, i < n; 0 < yn <∞ (1.9)

to show that

E

(
1

X

)
= nλ

∫ ∞
0

e−yn

yn

(yn)n−1

Γ(n)
dyn = nλ

Γ(n− 1)

Γ(n)
=

n

n− 1
λ

(1.10)
Of course, in this case we can just multiply by the constant
vector to get (

1− 1

n

)
1

X
(1.11)

as an unbiased estimator for λ.

1.3.2 Maximum Likelihood

One method for obtaining an estimator for a parameter θ is to
pick the value which maximizes the likelihood L(θ) = f(x; θ)
as a function of θ. This seems reasonable, since it gives the
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parameter value (or values in the case where θ is a collection
of parameters) for which the actual data were most likely. But
there is still something a bit fishy, since the likelihood function is
not a probability distribution for θ; it’s a probability distribution
for x whose form depends on the parameter θ. Still, we refer to
the value of θ which maximizes f(x; θ) as θ̂. If the parameter is
continuous, this is defined by a derivative

d

dθ
f(x; θ)

∣∣∣∣
θ=θ̂

= 0 (1.12)

The Bayesian picture is a little more logical, and gives a sense
of why maximum likelihood is a good idea. In the Bayesian case,
we end up with a posterior probability distribution f( θ | x ) for
θ based on the data x which we observed. The maximum of
the posterior occurs at the value of θ which is the mode of this
distribution. Since Bayes’s theorem tells us

f( θ | x ) ∝ f( x | θ )f(θ) (1.13)

we see that if the prior probability density for θ is uniform, the
maximum likelihood value θ̂ is the value which maximizes the
posterior f( θ | x ).

The value of the maximum likelihood estimate θ̂ depends on
x, so we can also think of a maximum likelihood estimator θ̂
which is a random variable, in fact a statistic constructed from
the random sample X.

In practice, it is easier to calculate the maximum likelihood
estimate using the logarithm `(θ) = lnL(θ) of the likelihood
function. As an example, consider once again the exponential
distribution. The likelihood function is

L(λ) = f(x;λ) =
n∏
i=1

λe−λxi (1.14)

so the log-likelihood is

`(λ) = n lnλ− λ
n∑
i=1

xi (1.15)

and its derivative is

`′(λ) =
n

λ
−

n∑
i=1

xi (1.16)

setting this to zero gives the estimator

λ̂ =
n∑n
i=1Xi

=
1

X
(1.17)

which we’ve noted is biased.

Thursday 5 September 2015
– Review for Prelim Exam Two

The exam covers materials from weeks 5 and 7-10 of the course,
i.e., Hogg sections 2.6-2.7 and 3.1-3.6, and problem sets 5-8.

Tuesday 10 November 2015 – Second Prelim
Exam

Thursday 12 November 2015
– Read Section 4.2 of Hogg

2 Interval Estimation

2.1 Confidence Intervals

Estimators of unknown parameters provide us with a method
to get a single number given an instance of a random sample.
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This is also known as point estimation; it’s also useful, however,
to generate an interval which is designed to contain the true
value for some fraction of sample realizations. This is known
as a (frequentist) confidence interval. It’s a pair of statistics
L = L(X) and U = U(X) chosen so that the probability that
the parameter θ lies between them is 1− α (e.g., if α = 0.10, it
is 90%):1

P (L < θ < U) = 1− α (2.1)

It’s important to note that the probabilities here refer to the
randomness of L and U , and not to the unknown θ. From the
frequentist perspective, we can’t talk about probabilities for dif-
ferent values of θ; it has some specific value, even if it’s unknown.
What’s random is the sample X and the statistics L and U cre-
ated from it.

Given a particular realization x of the sample X, we have a
specific confidence interval between ` = L(x) and u = U(x).
Note that the probabilistic statements do not actually refer to
the properties of a particular confidence interval (`, u) but to
the procedure used to construction of the confidence interval.

One method to construct the confidence interval is to choose
a statistic T = T (X; θ), known as a pivot variable, whose prob-
ability distribution is a known function of the parameters, and
construct an interval using the percentiles of the distribution

P (a < T (X; θ)< b) = 1− α (2.2)

By algebraically solving the inequalities a < T (X; θ) and
T (X; θ)< b for θ, we should be able to write

P (L(X)< θ < U(X)) = 1− α (2.3)

1We’re implicitly considering a two-sided confidence interval, so we also
have P (θ < L) = α/2 and P (U < θ) = α/2.

Note that this construction is not unique; different choices for
the pivot variable will give different confidence intervals with
the same confidence.

2.2 Aside: Bayesian Plausible Intervals

In the Bayesian perspective, where a particular sample instance
x results in a posterior probability distribution f( θ | x ), we
would have a straightforward and unique definition of a plausible
interval (`, u) ∫ u(x)

`(x)

f( θ | x ) dθ = 1− α (2.4)

This would be an interval such that the unknown value of θ had
a 1− α probability of lying within it.2 This would be a unique
prescription given the posterior pdf, but recall that to get that
pdf, we need to use whatever information we have about the
problem to construct the appropriate prior pdf f(θ).

2.3 Example: Mean of a Normal Distribution

To illustrate the pivot variable method, consider the case where
X is a sample of size n drawn from a N(µ, σ) distribution with
both µ and σ unknown, where we want a confidence interval on
µ. The pivot variable should depend on µ and X but not σ, so

Z =
X − µ
σ/
√
n

(2.5)

will not work, even though we know it obeys as N(0, 1) distribu-
tion (because X obeys a normal distribution with E(X) = µ and

2Again, we’re assuming it’s two-sided so that P ( θ<`(x) | X=x ) = α/2
and P (u(x)< θ | X = x ) = α/2.
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Var(X) = σ/
√
n. Fortunately, we know from Student’s theorem

that

T =
X − µ√
S2/n

(2.6)

obeys a t distribution with n − 1 degrees of freedom. This will
work as a pivot variable, since

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (2.7)

depends only on the sample, and requires no knowledge of µ or
σ. Having identified a pivot variable which obeys a t distribution
is useful not so much because we know the precise form of the
pdf

fT (t; ν) =
Γ([ν + 1]/2)√
νπΓ(ν/2)

(
1 +

t2

ν

)−[ν+1]/2

(2.8)

but because it’s a standard distribution for which the percentiles
are tabulated in various books or available in R, scipy, etc. The
90th percentile, for example, of a t distribution with ν degrees of
freedom is written t0.1,ν ; in general, the (1−α)×100th percentile
tα,ν is defined by

1− α = P (T ≤ tα,ν) =

∫ tα,ν

−∞
fT (t; ν) dt (2.9)

or equivalently by ∫ ∞
tα,ν

fT (t; ν) dt = α (2.10)

Since we want a two-sided confidence interval, we actually need
tα/2,ν and t1−α/2,ν . Since the t distribution is symmetric, though,
we can take advantage of the fact that t1−α/2,ν = −tα/2,ν , e.g.,
the 5th percentile is minus the 95th:
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Thus, returning to the case of the pivot variable T , which is
t-distributed with n− 1 degrees of freedom,

1− α = P (−tα/2,n−1 < T < tα/2,n−1)

= P

(
−tα/2,n−1 <

X − µ√
S2/n

< tα/2,n−1

)
(2.11)

Doing a bit of algebra, we can see that

X − µ√
S2/n

< tα/2,n−1 (2.12)

is equivalent to

X − tα/2,n−1

√
S2

n
< µ (2.13)

and

− tα/2,n−1 <
X − µ√
S2/n

(2.14)

is equivalent to

µ < X + tα/2,n−1

√
S2

n
(2.15)

so

P

(
X − tα/2,n−1

√
S2

n
< µ <X + tα/2,n−1

√
S2

n

)
= 1− α

(2.16)
which defines a confidence interval for µ.

Tuesday 17 November 2015
– Read Section 4.4 of Hogg

Note that we’ll skip Section 4.3, “Confidence Intervals for Pa-
rameters of Discrete Distributions”.

3 Order Statistics

Order statistics are a way of formalizing and making more pre-
cise some of the descriptive statistics/exploratory data analysis
techniques you may have used in the past. Recall, for example,
that if you took a data sample and happened to get the values

x1 x2 x3 x4 x5
17 6 19 3 12

you could sort them in order {3, 6, 12, 17, 19} and then the me-
dian of the sample was the middle entry, 12. As a formal pre-
scription, we could define y1 to be the lowest value in the sample
y2 to be the next lowest, etc., so that you get

y1 y2 y3 y4 y5
3 6 12 17 19

We can assign the same prescription to a random sample X =
{Xi} drawn from some distribution with pdf f(x). We define Y1
to be the lowest value in the sample, Y2 to be the next lowest,
and so forth, up to Yn, which is the highest. This means that (for
a sample drawn from a continuous distribution), the statistics
{Yi} will obey

Y1 < Y2 < · · · < Yn (3.1)

with 100% probability. We note a couple of important facts:

• Each order statistic Yj depends on the entire sample, i.e.,
all of the random variables {Xi}. For instance, in the real-
ization above, changing x4 to 20 would change y1 to 6, y2
to 12, etc.

• Although the random variables {Xi} are independent, the
{Yi} are not.
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3.1 Joint pdf

We can write the joint pdf for the {Yi} in terms of the distri-
bution from which the sample is drawn. To see how this works,
consider the simple case where n = 2, so that

Y1 = min(X1, X2) and Y2 = max(X1, X2) (3.2)

We know the joint pdf for X1 and X2 is

fX(x1, x2) = f(x1)f(x2) (3.3)

The transformation between X and Y is a little different than
what we’ve considered before, since it is not invertable. I.e.,
given values of y1 and y2, there is not a unique pair of x1 and
x2 that you can determine corresponding to them. The pair
(y1, y2) = (3, 5) could correspond to either (x1, x2) = (3, 5) or
(x1, x2) = (5, 3). (Note that the pair (y1, y2) = (5, 3) is im-
possible by definition, so the joint pdf fY(y1, y2) must be zero
unless y1 ≤ y2.) So to get the probability density at a particular
pair of values (y1, y2) which satisfy y1 < y2 you need to add the
probabilities for the two cases:

1. If x1 > x2, then y1 = x2 and y2 = x1; the Jacobian ma-
trix associated with the transformation in this part of the
(x1, x2) plane is{

∂xi
∂yj

}
=

(
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

)
=

(
0 1
1 0

)
(3.4)

Its determinant is J = −1 so |J | = 1 and the contribution
to fY(y1, y2) from this case is fX(y2, y1) = f(y2)f(y1).

2. If x1 < x2, then y1 = x1 and y2 = x2; the Jacobian ma-
trix associated with the transformation in this part of the
(x1, x2) plane is{

∂xi
∂yj

}
=

(
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

)
=

(
1 0
0 1

)
(3.5)

Its determinant is J = 1 so |J | = 1 and the contribution to
fY(y1, y2) from this case is fX(y1, y2) = f(y1)f(y2).

This means the total pdf is

fY(y1, y2) = f(y2)f(y1) + f(y1)f(y2) = 2f(y1)f(y2) y1 < y2
(3.6)

In the more general case of a sample of size n, there are n!
different ways the {Xi} could be ordered, so there will be n!
equal contributions to fY(y1, y2, . . . , yn), and

fY(y1, y2, . . . , yn) = n! f(y1)f(y2) · · · f(yn), y1 < y2 < · · · < yn
(3.7)

Note that

1. The restriction y1 < y2 < · · · < yn is in addition to any
other limitations on the support space associated with the
distribution f(x). (E.g., the support space for the order
statistics from a sample drawn from an exponential distri-
bution is 0 < y1 < y2 < · · · < yn <∞.)

2. Although the product n! f(y1)f(y2) · · · f(yn) factors, the
random variables {Yi} are not independent, because y1 <
y2 < · · · < yn is not a product space.

3.2 Quantiles

We’ve noted that, if n is odd, the order statistic Yn+1
2

is the sam-

ple median. It can be used as an estimator of the median µ̃ of
the probability distribution f(x), which is defined by F (µ̃) = 1

2
,

where F (x) is the cumulative distribution function correspond-
ing to f(x), i.e.,∫ µ̃

−∞
f(x) dx = 0.5 =

∫ ∞
µ̃

f(x) dx (3.8)
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This is a special case of a quantile ξp, defined by

F (ξp) =

∫ ξp

−∞
f(x) dx = p (3.9)

where 0 < p < 1. To follow the notation of Hogg, we’ll refer to
the distribution median as ξ0.5 rather than µ̃.

The order statistics can be used as estimators of quantiles of
the distribution, and are referred to as sample quantiles. The
convention adopted by Hogg is to divide the interval from 0 to
1 into n + 1 equal pieces, and thus define Yk as the k

n+1
sample

quantile. Note that this convention is not unique; for instance,
Devore uses k−0.5

n
in his section on probability plots. This is

equivalent to dividing the interval [0, 1] into n−1 full-sized pieces
and 2 half-sized pieces on the end. To see the difference between
these prescriptions, consider the case n = 4:

k 1 2 3 4
k

n+1
0.2 0.4 0.6 0.8

k−0.5
n

0.125 0.375 0.625 0.875

3.2.1 q-q Plots

One way of checking whether a particular data set could reason-
ably be a sample drawn from a distribution is to compare the
sample quantiles {yk} with the corresponding quantiles {ξ k

n+1
}

of the proposed distribution. This can be done on a plot with
n points, (ξ k

n+1
, yk) for k = 1, 2, . . . , n. If the points on this plot

(known as a probability plot or q-q (for quantile-quantile) plot)
are close to the line y = ξ, the sample is consistent with be-
ing drawn from the proposed distribution. A few things to note
about this construction:

1. The horizontal components {ξ k
n+1
} are determined by the

size of the sample and the proposed distribution. They
don’t depend on the sample values.

2. This is only a qualitative construction. We don’t have a
rule for deciding whether the plot is “close enough” to the
line or not.

3. You might think we’d need to make a plot for every possible
distribution, but there are some families for which one plot
will do for every member of the family. For instance, if the
distribution in question is a normal distribution N(µ, σ2)
then the quantiles are {ξp} defined by

p = FX(ξp) = P (X ≤ ξp) = Φ

(
ξp − µ
σ

)
(3.10)

where X is a N(µ, σ2) random variable and Φ(z) = P (Z ≤
z) is the cdf for a standard normal random variable Z. But
we also know that the quantiles of Z are given by

Φ(ξZ,p) = p (3.11)

(Note that in terms of the definitions used in constructing
confidence intervals, ξZ,p = z1−p and that zα is tabulated for
various values of α.) Since the function Φ(z) is invertable,

ξp − µ
σ

= ξZ,p (3.12)

so
ξp = µ+ σ ξZ,p (3.13)

This means that if we plot yk versus ξZ, k
n+1

= zn+1−k
n+1

, then

if {yk} are the order statistics of the realization of a sample
drawn from a N(µ.σ2) distribution, the points should lie
close to the line y = µ+σξ where σ is the slope and µ is the
intercept. This trick works for any family of distributions
with only a scale and/or location parameter, where the cdf
F (x) is a function of x−a

b
.
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3.2.2 Confidence Intervals for Quantiles

Finally, consider a construction which allows us to make a con-
fidence interval for one of the quantiles of an unknown distri-
bution. This really is a nonparametric method, since while you
could consider the unknown quantile to be the parameter, the
underlying distribution cannot be determined by this parameter
alone.

For simplicity, consider the special case of the median ξ0.5,
and a sample of size n = 5. We already know that the order
statistic Y3, which is the sample median, is a good estimator for
ξ0.5. Suppose we construct a confidence interval with Y2 and Y4
as endpoints. What is the confidence level associated with this?
I.e., what is

P (Y2 < ξ0.5 < Y4) ? (3.14)

Well, we know that by definition, the probability that any par-
ticularXi is below the median ξ0.5 is P (Xi<ξ0.5) = 0.5. Since the
random variables in the sample are independent, the question
of whether each one is below the median is like an independent
Bernoulli trial, which means the number of values in the sample
below ξ0.5 is a binomial random variable with n = 5 and p = 0.5.
Now, if Y2 < ξ0.5 that means that at least two random variables
in the sample are below the median. If ξ0.5 < Y4 that less than
four random variables in the sample are below the median. So
P (Y2 < ξ0.5 < Y4) is the probability that a Bin(5, 0.5) random
variable is equal to 2 or 3, i.e.,

P (Y2 < ξ0.5 < Y4) =

(
5

2

)
(0.5)2(0.5)3 +

(
5

3

)
(0.5)3(0.5)2

= 2

(
10

25

)
=

5

8
= 0.625

(3.15)

So this is a confidence interval with confidence 0.625. In general,
for a sample of size n, we can make a confidence interval on ξp

using

P (Yi < ξp < Yj) =

j−1∑
k=i

(
n

k

)
pk(1− p)n−k (3.16)

This is a more limited construction than the usual confidence
interval, since it’s only possible for specific confidence levels de-
termined by the binomial distribution, but for large n they are
in practice pretty close together.

Thursday 19 November 2015
– Read Sections 4.5-4.6 of Hogg

4 Hypothesis Testing

So far, we’ve considered methods to get a handle on the unknown
parameter(s) θ of a probability distribution f(x; θ) given that we
draw a sample X from that distribution, with joint pdf

fX(x1, x2, . . . , xn; θ) =
n∏
i=1

f(xi; θ) (4.1)

and find a particular realization X = x. Now we want to con-
sider how to use the realization of the sample to distinguish
between two competing hypotheses about what the underlying
distribution f(x) is. In principle the differences could be qual-
itative, but for simplicity we’ll assume that there is one family
f(x; θ) parametrized by θ which lies somewhere in a region Ω
and then take the hypotheses to be:

• H0: the distribution is f(x; θ) where θ ∈ ω0.

• H1: the distribution is f(x; θ) where θ ∈ ω1.

Typically, H0 represents the absence of the effect we’re looking
for, and is known as the null hypothesis, while H1 represents the
presence of the effect, and is known as the alternative hypothesis.
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For example, suppose someone claims to have extrasensory
perception, and to be able to use their telepathic powers to de-
termine the suits of cards drawn from a deck. For simplicity,
assume we shuffle the deck after each draw. Then the data {Xi}
are a sample drawn from a Bernoulli distribution, with each Xi

having some probability θ of being correct. The null hypothesis
H0 is that the person does not have ESP, and has a 25% chance
of guessing each suit correctly, so θ = 0.25. The alternative hy-
pothesis H1 is that they can determine the suit more accurately
than by random chance (but perhaps not perfectly), so θ > 0.25.

As another example, suppose that someone claims that when
twins are born, the birth weight of the first twin is on average
greater than that of the second. We could take the data {Xi} to
be the difference between the birth weights of the two twins, and
assume that the weights are normally distributed with unknown
variance. Then the null hypothesis H0 is that f(x) is a normal
distribution with mean µ = 0 and standard deviation σ > 0,
while the alternative hypothesis H1 is that f(x) is a normal
distribution with mean µ > 0 and standard deviation σ > 0.
(In this case there is a vector of parameters θ = (µ, σ).

A hypothesis test is simply a rule for choosing between the
two hypotheses depending on the realization x of the sample X.
Stated most generally, we construct a critical region C which is
a subset of the n-dimensional sample space D. If X ∈ C, we
“reject the null hypothesis H0”, i.e., we favor H1. If X /∈ C, i.e.,
X ∈ Cc we “accept the null hypothesis H0”, i.e., we favor H0

over H1. Now of course, since X is random, there will be some
probability P (X ∈ C; θ) that we’ll reject the null hypothesis,
which depends on the value of θ. If the test were perfect, that
probability would be 0 if H0 were true, i.e., for any θ ∈ ω0, and
1 if H1 were true, i.e., for any θ ∈ ω1, but then we wouldn’t be
doing statistics. So instead there is some chance we will choose
the “wrong” hypothesis, i.e., some probability that, given a value

of θ ∈ ω0 associated with H0, the realization of our data will
cause us to reject H0, and some probability that, given a value
of θ ∈ ω1 associated with H1, the realization of our data will
cause us to accept H0. As a bit of nomenclature,

• If H0 is true and we reject H0, this is called a Type I Error
or a false positive.

• If H1 is true and we reject H0, we have made a correct
decision (true positive).

• If H0 is true and we accept H0, we have made a correct
decision (true negative).

• If H1 is true and we accept H0, this is called a Type II Error
or a false negative.

Typically, a false positive is considered worse than a false nega-
tive, so usually we decide how high a false positive probability
we can live with and then try to find the test which gives us the
lowest false negative probability.

Given a critical region C, we’d like to talk about the associated
false positive probability α and false negative probability 1 −
γ, but we have to be a bit careful, since H0 and H1 are in
general composite hypotheses. This means that each of them
corresponds not to a single parameter value θ and thus a single
distribution, but rather to a range of values θ ∈ ω0 or θ ∈ ω1.
So both α and γ may depend on the value of θ. We take the
false alarm probability α to be the worst-case scenario within
the null hypothesis

α = max
θ∈ω0

P (X ∈ C; θ) (4.2)

This is also called the size of the critical region C. Somewhat
confusingly, it’s also referred to as the significance of the test.
This is a bit counter intuitive, since a low value of α means
the probability of a false positive is low, which means a positive
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result is more significant than if α were higher. It is the proba-
bility that we’ll falsely reject the null hypothesis H0, maximized
over any parameters within the range associated with H0. On
the other hand, since the alternative hypothesis almost always
has a parameter θ associated with it, we define the probability
of correctly rejecting the null hypothesis (which is one minus the
probability of a false negative) as a function of θ:

γC(θ) = P (X ∈ C; θ), θ ∈ ω1 (4.3)

We explicitly consider this as a function of the critical region C,
since we might want to compare different tests with the same
false alarm probability α (critical regions with the same size α)
to see which is more powerful.

4.1 Example: Binomial Proportion

To give a concrete example, consider the ESP test described
above. We let the would-be psychic predict the suit of n cards,
count the total number of successes Y =

∑n
i=1Xi, and reject the

null hypothesis if Y > k where k is some integer we’ve chosen,
with k > n/4. For both of the hypotheses, Y is a binomial
random variable, so

P (Y > k) =
n∑

i=k+1

(
n

i

)
θi(1− θ)n−i = 1− F (k; θ) (4.4)

where

F (k; θ) =
k∑
i=0

(
n

i

)
θi(1− θ)n−i (4.5)

is the cdf of a binomial distribution b(n, θ). For the null hypoth-
esis θ = 0.25 and for the alternative hypothesis 0.25 < θ < 1.
Thus the false alarm probability is

α = 1− F (k; 0.25) (4.6)

and the power of the test is

γk(θ) = 1− F (k; θ) (4.7)

If we make the threshold k higher, we get a lower false alarm
probability α, but we also get a less powerful test.

As a concrete example, suppose that n = 20, and we set a
threshold of k = 8. We can use scipy, invoked by

ipython --pylab

to calculate the false alarm probability

In [1]: from scipy.stats import binom

In [2]: n = 20

In [3]: k = 8

In [4]: alpha = 1 - binom.cdf(k,n,0.25); alpha

Out[4]: 0.04092516770651855

So α ≈ 0.041 = 4.1%. The power γ(θ) depends on the strength
of the ESP effect, but suppose θ = 0.50, that the psychic has a
1 in 2 chance rather than 1 in 4 of picking the right suit. Then
we can calculate the power:

In [5]: gamma_50 = 1 - binom.cdf(k,n,0.50); gamma_50

Out[5]: 0.74827766418457031

so γ(0.50) ≈ 0.748 = 74.8%.

4.1.1 Aside: ROC Curves

We could make the test more powerful by lowering the threshold
k, but then we would also increase the false alarm probability

12



α. A useful construction is the receiver operating characteristic
curve, or ROC curve for short. Given a value of θ, we plot α
versus γ(θ) for a range of threshold values k. We can do this
with matplotlib as well, using the arange function to generate
an array of integer values for k between 0 and 19:

In [6]: k = arange(20)

In [7]: alpha = 1 - binom.cdf(k,n,0.25)

In [8]: gamma_50 = 1 - binom.cdf(k,n,0.50)

In [9]: plot(alpha,gamma_50,’ks’);

In [10]: xlabel(r’False alarm $\alpha$’);

In [11]: ylabel(r’Power $\gamma(0.50)$’);

In [12]: plot([0,1],[0,1],’k--’);

In [13]: savefig(’notes04_roc.eps’);

The plot looks like this:
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The diagonal line is γ = α; we don’t expect any sensible test to
lie below this line, since it would mean that we were more likely
to reject H0 when it’s true than when H1 is true!

4.2 Example: Mean of a Normal Distribution

Consider the second example, where X is a random sample of
size n from a normal distribution, where the null hypothesis
H0 is µ = 0 and the alternative hypothesis H1 is µ > 0. For
simplicity, let’s assume that the variance σ2 is actually known.
(If the sample is large enough, we can use the sample variance
s2 as an estimate.) From our work on confidence intervals, we
know that

P

(
X − µ
σ/
√
n
> zα

)
= α (4.8)

So if we define a critical region

C ≡ X

σ/
√
n
> zα (4.9)
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this will correspond to a test with false alarm rate α. The power
of the test for a given true value of µ is

γ(µ) = P

(
X

σ/
√
n
> zα

)
= P

(
X − µ
σ/
√
n
> zα −

µ

σ/
√
n

)
= 1− Φ

(
zα −

µ

σ/
√
n

)
= Φ

(
µ

σ/
√
n
− zα

) (4.10)

4.2.1 p-Values

In this example, as in the last one, we actually have a family
of tests, parametrized by a threshold which we could imagine
varying. Given a data realization x, and in particular a sample
mean x, we will reject H0 if x > zασ/

√
n. This means there

will be some values of the false alarm probability α for which we
reject H0, and some for which we do not. One convenient way
to report which tests would indicate a positive result (reject the
null hypothesis) is to quote the α of the most stringent test for
which H0 would be rejected. Put another way, we ask, given a
measurement (in this case x), how likely is it that we would find
a measurement at least this extreme, just by accident, if the null
hypothesis were true. This is known as the p-value, and in this
case it is defined as

p = P (X≥x;µ = 0) = 1−Φ

(
x

σ/
√
n

)
= Φ

(
− x

σ/
√
n

)
(4.11)

A lower p value means that the results were less likely to have
occurred by chance in the absence of a real effect (i.e., if the
null hypothesis H0 were true). Typically if p < 0.05, the result
is considered interesting and worth future study.3

3However, if we test for many different effects, or test many different
data sets, and only report the result with the lowest p value, we can greatly
overstate the significance of our results. See http://xkcd.com/882/.

Note that the p value is often misinterpreted. It does not
represent the probability that the null hypothesis is true (we
cannot evaluate such a probability in frequentist inference). A
p value of 0.01 simply means, for the statistic we decided to
measure, if we repeated the test on many systems for which the
null hypothesis was true, we’d get a measurement as extreme,
or more, as the one we got, one percent of the time.

4.3 Aside: Bayesian Hypothesis Testing

In the Bayesian framework, the joint pdf for a sample X drawn
from a distribution with parameter θ can be written as f( x | θ ).
And we can talk about the posterior probability P (H1 | x ) that
a hypothesis is true, given an observed sample x. There are a
few challenges, though:

• Typically, our hypothesis allows us to describe the joint
pdf for a random sample X collected in the presence of
that hypothesis, f( x | H1 ), and then we can use Bayes’s
theorem to construct the desired probability

P (H1 | x ) =
f( x | H1 )P (H1)

f(x)
(4.12)

There are a couple of problematic quantities in this expres-
sion. First, it depends on P (H1), which is the prior proba-
bility that the hypothesis H1 was true, which we might have
difficulty stating. Second, the denominator f(x) is the over-
all probability density for the sample, marginizalized over
a complete set of mutually exclusive models, i.e.,

f(x) = f( x | H0 )P (H0) + f( x | H1 )P (H1)

+ f( x | H2 )P (H2) + · · ·
(4.13)

which we’re even less likely to have a handle on. The usual
way around this is to calculate not P (H1 | x ), but rather
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the odds ratio, the ratio of the posterior probabilities of the
competing models H1 and H0.

P (H1 | x )

P (H0 | x )
=
f( x | H1 )P (H1)/���f(x)

f( x | H0 )P (H0)/���f(x)
=
f( x | H1 )

f( x | H0 )

P (H1)

P (H0)
(4.14)

We still have the ratio of the prior probabilities,
P (H1)/P (H0), but can at least calculate unambiguously
the factor

f( x | H1 )

f( x | H0 )
(4.15)

by which we modify the prior odds ratio to get the posterior
one. This quantity is known as the Bayes factor.

• The joint pdfs f( x | H1 ) and f( x | H0 ) require that we
specify the hypotheses H1 and H0 a little more precisely
than we’ve done so far. In particular, if one or both of them
is a composite hypothesis, it’s not good enough to specify
a range like θ ∈ ω1 for the parameter(s) θ. We need to say
what the probability density associated with the hypothesis
for θ. For instance, marginalizing over θ gives

f( x | H1 ) =

∫
ω1

f( x | θ ) f( θ | H1 ) dθ (4.16)

Still, if we can overcome these mostly technical hurdles, the
Bayesian methods are very useful and satisfying. For example,
once we specify the hypotheses, including any prior distributions
of the parameters, the construction of the Bayes factor f( x |
H1 )/f( x | H0 ) from the data sample x is unique. In contrast,
in classical (frequentist) hypothesis testing, we have to choose a
test or family of tests, which usually means boiling the random
sample X down to a single statistic and hoping we’ve kept the
right information and haven’t discarded something that could
have made the test more sensitive.

Tuesday 24 November 2015
– Read Section 4.7 of Hogg

4.4 Chi-Square Tests

Recall that if we have a statistical test that tells us to favor an al-
ternative hypothesis H1 over the null hypothesis H0 if a random
sample X falls in a critical region C, the false alarm probability
for the test (also known as the size of C or the significance of
the test) is

α = P (X ∈ C|H0) (4.17)

Similarly, if we have some statistic Y = q(X) which tends to
be higher if the data favor H0, rather than fixing a threshold y0
and defining X ∈ C to mean q(X) > y0, we can use the actual
observed value of the statistic y = q(x) to define the p-value

p = P (Y > y|H0) (4.18)

i.e., the probability of getting a result at least this extreme if
H0 is the correct hypothesis.

Notice that neither of these constructions (for α or p) depend
on the alternative hypothesis H1 at all; they’re simply ways
of talking about how inconsistent the data are with the null
hypothesis H0. In the same category is the so-called goodness-
of-fit test: we measure how closely the actually-collected data
come to the most likely values, and how likely we were to deviate
by that much or more, if the model were actually correct.

We want to consider a family of goodness-of-fit tests related
to the chi-square distribution. We’ll generalize the picture a
bit to allow the random vector X predicted by the model to be
not just a random sample, but any set of n independent (but
not identically distributed) random variables. In several cases
we can construct a statistic which is, exactly or approximately,
chi-squared distributed. As an overview, we will consider four
cases:
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• If each Xi obeys a N(µi, σ
2
i ) distribution, we know∑n

i=1

(
Xi−µi
σi

)2
obeys a χ2(n) distribution.

• Given a binomial random variable, we can construct a
statistic which is approximately χ2(1)-distributed, if the
number of trials is large.

• We will generalize this to a multinomial random variable
with k alternatives to get a χ2(k − 1)-distributed statistic.
(We won’t show this.)

• If the model we’re testing has m parameters, and we pick
those to give the best fit (minimum chi-square statistic)
given our n data points, the minimized statistic will be
approximately χ2(n−m)-distributed. (We won’t show this,
but it makes sense, especially if the modelled means are
linear in the parameters.)

First, consider the case where the null hypothesis tells us that
our random data vector X is made up of n independent random
variables and that Xi is N(µi, σ

2
i ) with some specified µi and σi.

Then we know that

Zi =
Xi − µi
σi

(4.19)

is a standard normal random variable, and that

Y =
n∑
i=1

(Zi)
2 =

n∑
i=1

(
Xi − µi
σi

)2

(4.20)

being the sum the squares of of n independent standard normal
random variables, is a χ2(n) random variable. We can use the
cdf of the χ2 distribution to find the p value associated with a
particular mismatch. In particular

P (Y > χ2
n,0.05) = 0.05 (4.21)

where χ2
n,0.05 is the 95th percentile of the χ2(n) distribution.

4.4.1 Binomial and multinomial experiments

Even if the random variables are not normally distributed, a
statistic constructed in this way may still be approximately χ2-
distributed. For example, suppose that X1 is a b(n, p1) bi-
nomial random variable. We know that E(X1) = np1 and
Var(X1) = np1(1− p1). We also know that if np1 and n(1− p1)
are both more than around 5, the probabilities associated with
the binomial distribution can be approximated using the corre-
sponding normal distribution, N(np1, np1[1− p1]). In that case,
we get an approximate χ2(1) random variable

Q =
(X1 − np1)2

np1(1− p1)
(4.22)

We’ve been putting on the subscript 1 to allow a change of per-
spective. If we think of the binomial distribution as a special
case of the multinomial with k = 2, then we also have probabil-
ity p2 = 1− p1 and a dependent random variable X2 = n−X1.
The statistic can then be written as

Q =
(X1 − np1)2

np1p2
(4.23)

If we notice that 1
p1

+ 1
p2

= p1+p1
p1p2

= 1
p1p2

and X2 − np2 = n −
X1 − n(1 − p1) = X1 − np1, we see we can write the statistic
more symmetrically as

Q =
(X1 − np1)2

np1
+

(X2 − np2)2

np2
(4.24)

It turns out that, subject to the same requirements of approx-
imate normality (npi > 5), for a multinomial distribution with
k alternatives, the analogous statistic

Q =
k∑
i=1

(Xi − npi)2

npi
(4.25)
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is approximately χ2(k− 1) distributed. This can be used to, for
example, test a die to see if it’s fair, e.g., by rolling a six-sided
die more than about 30 times and counting up the number of
ones, twos, etc.

4.4.2 Minimizing over parameters

Finally, consider the case where H0 is a composite hypothe-
sis, corresponding to a family of models, and says that Xi is
N(µi(θ), σ2

i (θ)) where θ is an m-dimensional vector of parame-
ters θ1, . . . , θm. Then the χ2 statistic corresponding to a partic-
ular set of parameter values θ is

Y (θ) = q(X,θ) =
n∑
i=1

(
Xi − µi(θ)

σi(θ)

)2

(4.26)

If H0 is true, and θ are the actual parameter values, the statis-
tic Y (θ) is χ2(n)-distributed. Suppose that we don’t know the
parameter values, though, and we’ve collected a data vector x.
We can choose as our best estimate of the parameters the values
θ̂ which minimize the chi-square statistic y(θ) = q(x,θ), i.e.,

θ̂(x) is the solution to the system of equations

θ̂(x) satisfies
∂y(θ)

∂θj
=
∂q(x,θ)

∂θj
= 0, j = 1, . . . ,m

(4.27)
If we put these values back into y(θ), we get the minimized chi-

square value ŷ = y(θ̂) = q(x, θ̂(x)). Using this prescription to
generate a statistic, we have

Ŷ = Y (θ̂(X)) = q(X, θ̂(X)) (4.28)

It turns out that, under many circumstances, the minimized
chi-square statistic Ŷ obeys a χ2(n − m) distribution. We
won’t prove this, but note that it can be shown exactly for the

case where the variances {σ2
i } are independent of the parame-

ters θ and the means {µi} depend linearly on the parameters,
µ(θ) = Bθ where B is a n×m matrix of rank m < n. See for
example section 5.6 of http://ccrg.rit.edu/~whelan/courses/
2014_1sp_ASTP_611/notes_probability.pdf.

To illustrate this with a concrete example, suppose that H0

says that, for a parameter θ, the data are a random sample
drawn from a N(θ, σ) distribution, i.e., each of the µi is equal to
θ and each of the σi is equal to σ. Then the chi-square statistic
is

Y (θ) =
n∑
i=1

(Xi − θ)2

σ2
=

1

σ2

n∑
i=1

(Xi − θ)2 (4.29)

For a particular data realization, y(θ) = 1
σ2

∑n
i=1(xi − θ)2 and

the minimum is found by solving

0 = y′(θ̂) = 2
1

σ2

n∑
i=1

(θ̂ − xi) = 2
1

σ2

(
nθ̂ −

n∑
i=1

xi

)
(4.30)

I.e., θ̂(x) = 1
n

∑n
i=1 xi and the corresponding estimator is

θ̂(X) =
1

n

n∑
i=1

Xi = X (4.31)

i.e., the sample mean. Note that θ̂ is not only the value which
maximizes the chi-square statistic, it’s also the maximum likeli-
hood estimate. This is because the likelihood function is

L(θ) = fX(x, θ) =
1

(2πσ2)n/2
exp

(
−1

2

n∑
i=1

(xi − θ)2

σ2

)
= (2πσ2)−n/2e−y/2 ∝ e−q(x,θ)/2

(4.32)

I.e., the likelihood is a constant times the exponential of minus
one-half the χ2 value. This will be true as long as the underlying
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distribution is normal and the variances don’t depend on the
parameters (so that the constant out front really is a constant).

Anyway, if we substitute the mle θ̂(X) = X back into the
chi-square statistic, we get the minimized chi-square

Ŷ = Y (θ = X) =
1

σ2

n∑
i=1

(Xi −X)2 =
n− 1

σ2
S2 (4.33)

where S2 is the sample variance. But this is a combination which
we know to be χ2(n − 1)-distributed as a result of Student’s
theorem, so we’ve confirmed in this case that the chi-square
statistic minimized over the m = 1 parameters obeys a χ2(n−m)
distribution, as advertised.
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