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Tuesday, February 11, 2014

1 Fundamentals of Probability

1.1 Probability and Logic

See Gregory, Chapters 1 and 2
There are numerous interpretations of probability, but one

which applies well to observational science is that of an extended
logic. Let A be a proposition which could be either true or false,
e.g., “The orbital period of Mars is between 686 and 687 days,”
“The student in question receives an A in stat methods,” or “My
detector will collect 427 photons in the next two hours.” We may
know, given the information at hand, that A is definitely true or
definitely false, or we may be uncertain about the answer, either
because our knowledge of the situation is incomplete, or because
it refers to the outcome of an experiment with a random element,
which has not occurred yet. The probability of the proposition
A (which we also call an “event”) is a number between 0 and 1
which quantifies our degree of certainty, given the information
at hand. We write this as P (A|I), where I represents some
state of knowledge, to emphasize that the probability we assign
always depends on the information we have, the assumption that
a model is correct, etc. If A is definitely true, in the context of
I, then P (A|I) = 1. If it’s definitely false, P (A|I) = 0.

If A represents the outcome of an experiment which we could
somehow arrange to repeat under identical circumstances, then
P (A|I) will be approximately equal to the long-term frequency
of the event A. I.e., if we do some large number N of repeti-
tions of the experiment, at the beginning of which we recreate
the situation described by I, the approximate number of exper-
iments in which A will turn out to be true is N×P (A|I). In the
classical or “frequentist” approach to statistics, this is the only
sort of event to which we’re allowed to assign a probability, but

in the more general “Bayesian” framework we are free to assign
probabilities to any logical proposition.

Several basic operations can be used to combine logical propo-
sitions:

• Negation. A is true if A is false, and vice-versa. In words,
we can think of A as “not A”. (Other notations include A′

and ¬A.)

• Intersection. A,B is true if A and B are both true. In
words, this is “A and B”. (Other notations include AB,
A ∩ B and A ∧ B.) The advantage of the comma is that
P (A,B|I) is the probability that both A and B are true,
given I.

• Union. A+ B is true if either A or B (or both) is true. In
words, this is “A or B”. (Other notations include A ∪ B
and A ∨ B.) Note the unfortunate aspect of this notation
that + is to be read as “or” rather than “and”.

The relationships between logical propositions are easier to
see with so-called truth tables, where you make a list of all of
the possible combinations of truth and falsehood for different
propositions:

A B A,B A,B A,B A,B A+B
T T T F F F T
T F F T F F T
F T F F T F T
F F F F F T F

Two propositions are considered to be equivalent if one is
true whenever the other is true and false whenever the other is
false. For instance, we can show that A = A,B +A,B with the
following truth table:
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A B A,B A,B A,B + A,B
T T T F T
T F F T T
F T F F F
F F F F F

There are basic rules of probability corresponding to these
logical operations:

• P (A|I) + P (A|I) = 1

• The product rule: P (A,B|I) = P (A|B, I)P (B|I)

• The sum rule: if A and B are mutually exclusive, i.e., if
P (A,B|I) = 0, then P (A+B|I) = P (A|I) + P (B|I).

Note that in this approach, where all probabilities are condi-
tional, the product rule is really what’s fundamental. Classical
approaches to probability instead define the conditional proba-
bility as P (A|B) = P (A,B)

P (B)
, and therefore only entertain consid-

eration of the conditional probability P (A|B) if B is not only
something to which they’re allowed assign a probability, but for
which that probability is nonzero.

It is possible to show that any extension of logic which allows
for a quantitative characterization of the plausibility of logical
statements, obeying a few desiderata, is necessarily equivalent
to probability theory. I encourage you to read Chapter Two of
Gregory (which is based on a presentation in Jaynes) for details.

1.2 Bayes’s Theorem

Because the logical “and” and “or” operations are symmetrical,
i.e., A,B is equivalent to B,A and A+B is equivalent to B+A,
we can write the product rule in two different ways:

P (A,B|I) = P (A|B, I)P (B|I) = P (B|A, I)P (A|I) (1.1)

this can be rearranged into Bayes’s Theorem, which says that

P (A|B, I) =
P (B|A, I)P (A|I)

P (B|I)
(1.2)

which is incredibly useful when you naturally know P (B|A, I)
but would like to know P (A|B, I). For instance, suppose A
refers to “I have terrible-disease-of-the-year (TDY)”, B refers
to “I test positive for TDY”, and I represents the information
that I had no extra risk factors or symptoms for TDY but was
routinely tested, 0.1% of people in such a group have TDY, the
test has a 2% false positive rate (2% of people without TDY will
test positive for it) and a 1% false negative rate (1% of people
with TDY will test negative for it). This information tells us
that:

• P (A|I) = 0.001 so P (A|I) = 0.999.

• P (B|A, I) = 0.01 so P (B|A, I) = 0.99.

• P (B|A, I) = 0.02 so P (B|A, I) = 0.98.

Additionally, since B = B,A+B,A,

P (B|I) = P (B,A|I) + P (B,A|I)

= P (B|A, I)P (A|I) + P (B|A, I)P (A|I)

= 0.99× 0.001 + 0.02× 0.999 = 0.00099 + 0.01998

= 0.02097

(1.3)

We can then use Bayes’s theorem to show that

P (A|B, I) =
0.00099

0.02097
≈ 0.04721 (1.4)

I.e., if I test positive for TDY, I have about a 4.7% chance of
actually having the disease. This is a lot less than P (B|A, I),
which is 99%!
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In the context of observational science, Bayes’s theorem is
most commonly applied to a situation where H is a hypothesis
which I’d like to evaluate and D is a particular set of data I’ve
collected. It’s usually straightforward to work out P (D|H, I),
the probability of observing a particular set of data values given
a model, but I generally want to answer the question, what is
my degree of belief in the hypothesis H after the observation.
The answer, according to Bayes’s Theorem, is

P (H|D, I) =
P (D|H, I)P (H|I)

P (D|I)
(1.5)

As a bit of terminology:

• P (H|I) is called the prior probability of hypothesis H.

• P (H|D, I) is called the posterior probability of H. (This is
a bit of a misnomer since it implies they are chronological;
really we’re considering the probabilities we assign with and
without the knowledge of D.)

• P (D|H, I) is called the sampling distribution if we view it as
a function of D or the likelihood if we view it as a function
of H.

• P (D|I) is called the evidence, but as we’ll see, it’s usu-
ally considered a normalization constant, since it doesn’t
depend on H.

1.3 Bayesian and Frequentist Inference

Now a brief preview of how probabilities can be used to make
statements about different hypotheses in light of observational
data. We have a hypothesis H (e.g., a model, with certain val-
ues for its parameters) and it makes predictions about data D,
i.e., the results of an observation or experiment. If these pre-
dictions had no randomness or uncertainty, i.e., H always led
to a particular D, we could know for sure that e.g., D implied

H. Instead, we need to take the probability P (D|H, I) for the
outcome of an experiment given a hypothesis, and use it to say
something about the hypothesis.

The Bayesian approach uses Bayes’s theorem (1.5) to define
P (H|D, I) and evaluate it for the actual data observation that
we made. In particular if we want to compare two hypotheses
H1 and H2, we can consider the ratio1

P (H1|D, I)

P (H2|D, I)
=
P (D|H1, I)

P (D|H2, I)

P (H1|I)

P (H2|I)
(1.6)

Now, different people with different background information I
would likely assign different values to the prior odds ratio P (H1|I)

P (H2|I) ,
but much less information is used to calculate the likelihood
ratio P (D|H1,I)

P (D|H2,I)
. When we think of it as the factor by which we

multiply the prior odds ratio P (H1|I)
P (H2|I) to get the posterior odds

ratio P (H1|D,I)
P (H2|D,I) , we call it the Bayes Factor.

In the frequentist approach, we’re not allowed to assign prob-
abilities to different hypotheses, so all we can consider is how
the likelihood2 P (D|H, I) looks for different choices of the hy-
pothesis H and evaluate it for the particular data D observed.
The problem is that we can’t address the question about the
relative likelihood of different hypotheses and instead have to
compare the data observed to different data that could have
been observed for each hypothesis. In exchange for not having
to say anything about P (H|I) we can’t actually say anything
about P (H|D, I).

1Note that the denominator P (D|I) has cancelled out, which is a good
thing since to calculate it we’d need to consider every possible hypothesis.

2In the strict frequentist interpretation, we’re also not allowed to use
H or I in a conditional probability so it’s usually written something like
P (D;H) or PH(D), but let’s stick with the Bayesian notation since we
know what it means.
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Thursday, February 13, 2014

2 Probability Distributions

In what follows, we will often suppress the explicit mention of
the background information I on which all of our probabili-
ties are conditional. The logical propositions to which we of-
ten assign probabilities involve the values of some random or
otherwise unknown quantities. So for example, Ncounts = 37 or
70 km/s/Mpc < H0 < 75 km/s/Mpc. Sometimes the notation
gets a bit confused between a quantity and its value, and you’ll
see things like X for a “random variable” and x for a value it
can take on. You’d like to be able to specify the probability
that X = x, as a function of x. In practice, this is slightly com-
plicated by whether we think of X as taking on only discrete
values, or if it can take on any value in a continuous range.

If X is discrete, we can talk about its probability mass function
pX(x) = P (X = x). This is often just written p(x) or P (x). For
instance, if X is the number of events in a particular interval
from a stationary process in which the events are independent
of one another, and the average number of events expected in
the interval given the long-term event rate is µ it is described
by the Poisson distribution

p(x) = P (X = x) =

{
µx

x!
e−µ x = 0, 1, 2, . . .

0 otherwise
(2.1)

However, it often happens that X is continuous, so that it
is vanishingly unlikely that it takes on one specific value. For
instance, the height of a randomly chosen person will not be
exactly 175 cm. If you measure it to more significant figures, it
will turn out to be 175.25 cm or 175.24732 cm etc. So instead
we want to talk about the probability for X to be in a small

interval, which we call the probability density function

f(x) = lim
dx→0

P (x < X < x+ dx)

dx
(2.2)

so that

P (a < X < b) =

∫ b

a

f(x) dx (2.3)

The pdf might be called pdf(x) or even P (x). A useful notation
for the pdf is dP

dx
, which tends to make the impact of changes

of variables more obvious. In the end, it’s a bit hopeless to try
to stick to one letter, since you might want to talk about the
joint probability distribution associated with some discrete and
some continuous random variables. To give a concrete example,
a common probability distribution is the Gaussian distribution
with parameters µ and σ, which has pdf

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, −∞ < x <∞ (2.4)

2.1 Expectation Values

In either case, you can define an operation known as the expec-
tation value

〈g(X)〉 =

{∑
x g(x) p(x) X discrete∫∞
−∞ g(x) f(x) dx X continuous

(2.5)

with the mean µX = 〈X〉 as a special case, and also the variance

Var(X) =
〈
(X − µX)2

〉
(2.6)

Note that the linearity of the expectation value means that

Var(X) =
〈
(X − µX)2

〉
=
〈
X2
〉
− 2µX 〈X〉+ µ2

X

=
〈
X2
〉
− 2µ2

X + µ2
X =

〈
X2
〉
− µ2

X

(2.7)
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To have a sensible probability distribution, we should satisfy
a normalization condition

∑
x p(x) = 1 or

∫∞
−∞ f(x) dx = 1.

One particularly useful expectation value is known as the mo-
ment generating function, defined as

M(t) =
〈
etX
〉

(2.8)

If we use the Taylor series for the exponential, we can see that

M(t) =

〈
∞∑
k=0

(tX)k

k!

〉
=
∞∑
k=0

tk

k!

〈
Xk
〉

(2.9)

Considered as a function of t, we can think of this in terms of a
McLaurin series whose kth coëfficient M (k)(0)/k! equals the kth
moment divided by k!. I.e., if we take the kth derivative of the
mgf, evaluated at t = 0, we get the kth moment:

M (k)(0) = E
(
Xk
)

(2.10)

Note that the moment generating function doesn’t exist for
every probability distribution. In general, the expectation value
〈h(X)〉 only exists if 〈|h(X)|〉 is finite. Consider, for example,
the Cauchy distribution, which has the probability density func-
tion

f(x) =
1

π

1

1 + x2
−∞ < x <∞ (2.11)

It is properly normalized, since∫ ∞
−∞

dx

1 + x2
= π (2.12)

(which you can show with the trigonometric substitution x =
tan θ, but in any event, the integral is well-defined because the
integrand goes like x−2 as x goes to ±∞). This distribution
doesn’t have a mean or in fact any moments, because〈

Xk
〉

=

∫ ∞
−∞
|x|k dx

1 + x2
(2.13)

diverges because the integrand goes to |x|k−2 for large |x|. Even
if k = 1, we get logarithmic divergence because the integrand
goes like |x|−1, which doesn’t go to zero fast enough.

A closely related function is the characteristic function
ΦX(ξ) =

〈
eiξX

〉
. For a continuous distribution with pdf f(x),

this is

Φ(ξ) =

∫ ∞
−∞

eiξxf(x) dx (2.14)

which is, up to conventions about 2π and i vs −i, the Fourier
transform of the pdf. The nice thing about the characteristic
function is that it will always exist, because

∫∞
−∞ f(x) dx = 1 <

∞. If it is an analytic function, we can use analytic contin-
uation3 to define M(t) = Φ(−it). In some cases the moment
generating function won’t exist, which typically means some of
the moments are not defined. But if it does, it uniquely deter-
mines the probability distribution, basically because the inverse
Fourier transform is unique.

2.2 Change of Variables in Probability Dis-
tributions

Imagine you have a random variable X and another random
variable Y = h(X) whose value is given by acting on the random
value of X with the deterministic function h(). How can we
determine the probability distribution for Y from the probability
distribution for X?

Well, if they’re discrete random variables, things are pretty
straightforward:

pY (h(x)) = P (Y = h(x)) = P (X = x) = pX(x) (2.15)

3The characteristic function for the Cauchy distribution is Φ(ξ) = e−|ξ|,
which is not analytic at ξ = 0, which is why we cannot use analytic contin-
uation to define the mgf.
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The pmf for Y has the same value as the pmf for X; you just
have to evaluate it at the appropriate value.

Things get more interesting, though, for continuous random
variables, since the pdf is a density, and not the probability
of a specific value. It’s fundamentally related to the fact that
the probability for an event like x1 < X < x2 has to be the
same as that for an equivalent event, say y1 < Y < y2 where
Y = h(X) and either y1 = h(x1) and y2 = h(x2) (if h(x) is
monotonically increasing) or y1 = h(x2) and y2 = h(x1) (if h(x)
is monotonically decreasing):∫ x2

x1

fX(x) dx =

∫ y2

y1

fY (y) dy (2.16)

You can derive the formula in detail, but the appropriate trans-
formation is suggested by the notation:

dP

dy
=

dP
dx∣∣ dy
dx

∣∣ (2.17)

i.e.,

fY (h(x)) =
fX(x)

|h′(x)| (2.18)

Why the absolute value? Because the probability density for
X and Y is defined to be positive, even if the transformation
is such that Y decreases with increasing X. (Basically, it’s a
property of the way densities transform.)

2.2.1 Example: Inclination

As an example of the importance of a change of variables, con-
sider the inclination ι between an arbitrary direction (say the
normal to the orbital plane of a binary star system) and our line

of sight. This is uniformly distributed in χ = cos ι, from χ = −1
to χ = 1, so

f(χ) =
dP

dχ
=

1

2
− 1 ≤ χ ≤ 1 (2.19)

If we change variables to ι, we have to use

dχ

dι
=

d

dι
cos ι = − sin ι (2.20)

to find

f(ι) =
dP

dι
=
dP

dχ

∣∣∣∣dχdι
∣∣∣∣ =

1

2
sin ι 0 ≤ ι ≤ π (2.21)

which is not uniform in ι.
Of course, this can also be extended to a probability density

in the inclination and an azimuthal angle ψ, and leads to a
direction uniformly distributed over the sphere:

d2P

d2Ω
=

d2P

sin ι dι dψ
=

d2P

dχ dψ
=

1

4π
(2.22)

Tuesday, February 18, 2014

2.3 Multivariate Distributions

Of course, you need not be dealing with only one unknown or
random quantity at a time, and it’s often useful to consider the
joint probability distribution for multiple quantities at once. If
they are discrete, this is pretty simple, for example

p(x1, x2) = P (X1 = x1, X2 = x2) (2.23)

If they’re continuous, you can again define a probability density

f(x1, x2) =
d2P

dx1 dx2

= lim
dx1→0
dx2→0

P (x1 < X1 < x1 + dx1, x2 < X2 < x2 + dx2)

dx1 dx2

(2.24)
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We can use a version of the probability sum rule which says
that if {B1, B2, . . . , Bn} are a set of mutually exclusive exhaus-
tive alternatives, so that A = A,B1 + A,B2 + · · ·+ A,Bn,

P (A|I) =
n∑
k=1

P (A,Bk|I) (2.25)

This process is known as marginalization, and is useful if we
really don’t care which of the alternatives Bk is true. Likewise,
if we want to focus on the probability distribution for X1 and
ignore the value of X2, we can integrate out the joint probability
density

fX1(x1) =

∫ ∞
−∞

f(x1, x2) dx2 (2.26)

This can be combined with the product rule f(x1, x2) =
fX1|X2(x1|x2)fX2(x2) to write

fX1(x1) =

∫ ∞
−∞

f(x1, x2) dx2 =

∫ ∞
−∞

fX1|X2(x1|x2) fX2(x2) dx2

(2.27)
where fX1|X2(x1|x2) is the conditional probability distribution
for X1, assuming that X2 takes on the value x2.

2.3.1 Expectation Values, Variance, Covariance and
Correlation

If we have a multivariate probability distribution, we can define
the expectation value of a function of the variables with the
appropriate sum or integral, e.g., for a continuous distribution
with density f(x, y), the expectation value of a function g(X, Y )
is

〈g(X, Y )〉 =

∫ ∞
−∞

∫ ∞
−∞

g(x, y) f(x, y) dx dy (2.28)

In addition to the usual means and variances:

µX = 〈X〉 =

∫ ∞
−∞

∫ ∞
−∞

x f(x, y) dx dy =

∫ ∞
−∞

x fX(x) dx

(2.29)
and

Var(X) = σ2
X =

〈
(X − µX)2

〉
=
〈
X2
〉
− µ2

X (2.30)

we can define the covariance

Cov(X, Y ) = 〈(X − µX)(Y − µY )〉 = 〈XY 〉 − µXµY (2.31)

and the dimensionless correlation

Corr(X, Y ) =
Cov(X, Y )

σXσY
(2.32)

We can also define the moment generating function for a series
of variables, e.g.,

M(t1, t2) = 〈exp(t1X1 + t2X2)〉 (2.33)

where the moments are written in terms of partial derivatives

E[X1
m1X2

m2 ] =
∂m1+m2

∂m1t1∂m2t2
M(t1, t2)

∣∣∣∣
(t1,t2)=(0,0)

(2.34)

2.3.2 Change of Variables

For the case of the transformation of continuous random vari-
ables we have to deal with the fact that fX1,X2(x1, x2) and
fY1,Y2(y1, y2) are probability densities and the volume (area) el-
ement has to be transformed from one set of variables to the
other. If we write fX1,X2(x1, x2) ∼ d2P

dx1dx2
and fY1,Y2(y1, y2) ∼

d2P
dy1dy2

, the transformation we’ll need is

d2P

dy1dy2

∼
∣∣∣∣det

∂(x1, x2)

∂(y1, y2)

∣∣∣∣ d2P

dx1dx2

(2.35)
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where we use the determinant of the Jacobian matrix

∂(y1, y2)

∂(x1, x2)
=

(
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

)
(2.36)

which may be familiar from the transformation of the volume
element

dy1 dy2 =

∣∣∣∣det
∂(y1, y2)

∂(x1, x2)

∣∣∣∣ dx1 dx2 (2.37)

if we change variables in a double integral.

To get a concrete handle on this, consider an example. Let X
and Y be continuous random variables with a joint pdf

fX,Y (x, y) =

{
4
π
e−x

2−y2 0 < x <∞; 0 < y <∞
0 otherwise

(2.38)

If we want to calculate the probability that X2 + Y 2 < a2 we
have to integrate over the part of this disc which lies in the first
quadrant x > 0, y > 0 (where the pdf is non-zero):

0 a
x

0

a

y

The limits of the x integral are determined by 0 < x and x2 +
y2 < a, i.e., x <

√
a2 − y2; the range of y values represented

can be seen from the figure to be 0 < y < a, so we can write the
probability as

P (X2 + Y 2 < a2) =

∫ a

0

∫ √a2−y2

0

4

π
e−x

2−y2dx dy (2.39)

but we can’t really do the integral in this form. However, if we
define random variables R =

√
X2 + Y 2 and4 Φ = tan−1(Y/X),

so that X = R cos Φ and Y = R sin Φ, we can write the proba-
bility as

P (X2 +Y 2<a2) = P (R<a) =

∫ π/2

0

∫ a

0

fR,Φ(r, φ) dr dφ (2.41)

if we have the transformed pdf fR,Φ(r, φ). On the other hand, we
know that we can write the volume element dx dy = r dr dφ. We
can get this either from geometry in this case, or more generally
by differentiating the transformation(

x
y

)
=

(
r cosφ
r sinφ

)
(2.42)

4Note that we can only get away with using the arctangent tan−1(y/x)
as an expression for φ because x and y are both positive. In general, we
need to be careful; (x, y) = (−1,−1) corresponds to φ = −3π/4 even though
tan−1([−1]/[−1]) = tan−1(1) = π/4 if we use the principal branch of the
arctangent. For a general point in the (x, y) plane, we’d need to use the
function

atan2(y, x) =



tan−1(y/x)− π x < 0 and y < 0

−π/2 x = 0 and y < 0

tan−1(y/x) x > 0

π/2 x = 0 and y > 0

tan−1(y/x) + π x < 0 and y ≥ 0

(2.40)

φ = atan2(y, x) to get the correct φ ∈ [−π, π).
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to get(
dx
dy

)
=

(
cosφ dr − r sinφ dφ
sinφ dr + r cosφ dφ

)
=

(
cosφ −r sinφ
sinφ r cosφ

)(
dr
dφ

)
(2.43)

and taking the determinant of the Jacobian matrix:

det
∂(x, y)

∂(r, φ)
=

∣∣∣∣cosφ −r sinφ
sinφ r cosφ

∣∣∣∣ = r cos2 φ+ r sin2 φ = r (2.44)

so the volume element transforms like

dx dy =

∣∣∣∣det
∂(x, y)

∂(r, φ)

∣∣∣∣ dr dφ = r dr dφ (2.45)

Even if we knew nothing about the transformation of random
variables, we could use this to change variables in the integral
(2.39) to get∫ a

0

∫ √a2−y2

0

4

π
e−x

2−y2dx dy =

∫ π/2

0

∫ a

0

4

π
e−r

2

r dr dφ (2.46)

If we compare the integrands of (2.46) and (2.46) we can see
that the transformed pdf must be

fR,Φ(r, φ) =

{
r e−r

2
0 < r <∞; 0 < φ < π/2

0 otherwise
(2.47)

Incidentally, we can calculate the probability as

P (R < a) =

∫ π/2

0

∫ a

0

4

π
e−r

2

r dr dφ =

∫ a

0

e−r
2

2r dr = − e−r2
∣∣∣a
0

= 1− e−a2

(2.48)

To return to the general case, we see there are basically two
things to worry about: one is the Jacobian determinant relating

the volume elements in the two sets of variables, and the other is
transforming the ranges of variables used to describe the event,
as well as the allowed range of variables. In general terms, if
S is the support of the random variables X1 and X2, i.e., the
smallest region of R2 such that P [(X1, X2) ∈ S] = 1 and T is
the support of Y1 and Y2, we need a transformation of the pdf
fX1,X2(x1, x2) defined on S such that

P [(X1, X2) ∈ A] =
x

A

fX1,X2(x1, x2) dx1 dx2

=
x

B

fY1,Y2(y1, y2) dy1 dy2 = P [(Y1, Y2) ∈ B] (2.49)

where B is the image of A under the transformation, i.e.,
(x1, x2) ∈ A is equivalent to {u1(x1, x2), u2(x1, x2)} ∈ B. Since
a change of variables in the integral gives us

x

A

fX1,X2(x1, x2) dx1 dx2

=
x

B

fX1,X2(w1(y1, y2), w2(y1, y2))

∣∣∣∣det
∂(x1, x2)

∂(y1, y2)

∣∣∣∣ dy1 dy2

(2.50)

we must have, in general,

fY1,Y2(y1, y2) =

∣∣∣∣det
∂(x1, x2)

∂(y1, y2)

∣∣∣∣ fX1,X2(w1(y1, y2), w2(y1, y2))

(y1, y2) ∈ T (2.51)

which is the more careful way of writing the easier-to-remember
formula we started with:

d2P

dy1dy2

∼
∣∣∣∣det

∂(x1, x2)

∂(y1, y2)

∣∣∣∣ d2P

dx1dx2

(2.52)
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2.3.3 General Formula

You can also perform this a change of variables on a joint prob-
ability density to write it in terms of another set of variables.
Suppose you have N random variables {Xi} from which you
can determine the values of N random variables {Yi}. Then the
transformation uses the Jacobian determinant:

dNP

dNy
=

(
dNP

dNx

)/∣∣∣∣det

{
∂yi
∂xj

}∣∣∣∣ (2.53)

You can see this is the right thing to do because the Jacobian
determinant is used to transform the measure of a multiple in-
tegral:

dNy =

∣∣∣∣det

{
∂yi
∂xj

}∣∣∣∣ dNx (2.54)

and these probability densities are meant to be put under mul-
tiple integrals. Written in more standard notation, if we define

x ≡ {xi}, y ≡ {yi} (2.55)

and

Jyx(x) = det

{
∂yi
∂xj

}
(2.56)

then

fY(h(x)) =
fX(x)

|Jyx(x)| (2.57)

Thursday, February 20, 2014

3 Probability Distributions

3.1 Some Specific Probability Distributions

See Gregory, Chapter 5

Before we delve into frequentist and Bayesian applications
of probability distributions, it’s useful to consider some specific
random variables, the sort of physical situations to which they’re
relevant, and what their probability distributions look like.

3.1.1 The Binomial Distribution (discrete)

Consider a sequence of identical independent yes/no questions,
for example, the outcomes of a series of n flips of a coin, where
the probability of heads on each flip is α. Let Hi denote the
event “the ith flip is heads” and Ti = Hi denote “the ith flip is
tails”, so that P (Hi|α, I) = α and P (Ti|α, I) = 1−α If we want
to get the probability of a particular sequence of heads and tails,
we can use the product rule, e.g., the probability of a head on
the first flip followed by a tail on the second flip is

P (H1, T2|α, I) = P (H1|α, I)P (T2|H1, α, I) (3.1)

If the information I includes the fact that coins have no “mem-
ory”, i.e., we’re not any more or less likely to flip a head on
the second flip because we’ve got a head on the first flip, then
P (T2|H1, α, I) = P (T2|α, I) = 1− α, so that

P (H1, T2|α, I) = P (H1|α, I)P (T2|α, I) = α(1− α) (3.2)

Note, this is a special case of independence of events. Saying
that two events A and B are independent in the context of
information I means that we can use a specialized product rule

P (A,B|I) = P (A|I)P (B|I) iff A & B independent (3.3)

If we consider the event H1, H2, T3, the probability is

P (H1, H2, T3|α, I) = P (H1|α, I)P (H2|α, I)P (T3|α, I)

= (α)(α)(1− α) = α2(1− α)1 (3.4a)

11



Similarly

P (H1, T2, H3|α, I) = P (H1|α, I)P (T2|α, I)P (H3|α, I)

= (α)(1− α)(α) = α2(1− α)1 (3.4b)

P (T1, H2, H3|α, I) = P (T1|α, I)P (H2|α, I)P (H3|α, I)

= (1− α)(α)(α) = α2(1− α)1 (3.4c)

So each possible sequence of two heads and a tail has a proba-
bility of α2(1−α)1. In general, the probability for each possible
sequence of k heads and n − k tails is αk(1 − α)n−k. To get
the overall probability of k heads and n − k tails in n flips, we
need to add up the probabilities for all of the relevant sequence;
the result is the probability mass function for a binomial ran-
dom variable K, p(k|n, α). For example, we see there are three
possible sequences of two heads and a tail, so

p(2|3, α) = 3α2(1− α)1 (3.5)

In general, the number of ways to pick k of the n flips to be
heads is “n choose k”,

(
n
k

)
= n!

k!(n−k)!
, also known as nCk, or the

“binomial coëfficient”5 so the pmf for a binomial distribution is

p(k|n, α) =

(
n

k

)
αk(1− α)n−k k = 0, 1, . . . , n (3.6)

We can show that this probability distribution is normalized
using the binomial expansion formula

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k (3.7)

5For more review and practical discussion of the binomial coëfficient, see
section 1.1 of http://ccrg.rit.edu/~whelan/courses/2013_3fa_STAT_
405/notes03.pdf

so that

n∑
k=0

p(k|n, α) =
n∑
k=0

(
n

k

)
αk(1−α)n−k = (α+ [1−α])n = 1n = 1

(3.8)
The same sort of calculation can be used to find the moment
generating function and use it to find the mean and variance
relatively quickly:

M(t) =
〈
etK
〉

=
n∑
k=0

etkp(k|n, α) =

(
n

k

)
(αet)k(1− α)n−k

= (αet + [1− α])n
(3.9)

It is often easier to work with the logarithm of the mgf, known
as the cumulant generating function, which you studied on the
most recent homework:

ψ(t) = lnM(t) = n ln(αet + [1− α]) (3.10)

We use the chain rule to take its derivative:

ψ′(t) =
nαet

αet + [1− α]
=

nα

α + [1− α]e−t
(3.11)

from which we get the mean

E(K) = ψ′(0) =
nα

α + [1− α]
= nα (3.12)

and differentiating again gives

ψ′′(t) = − −nα(1− α)e−t

(α + [1− α]e−t)2
(3.13)

from which we get the variance:

Var(K) = ψ′′(0) =
nα(1− α)

(α + [1− α])2
= nα(1− α) (3.14)
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3.1.2 Other Related Distributions

We mention briefly a few other distributions here, which are
related to the binomial distribution, and which we will consider
more closely as we need them for applications.

The hypergeometric distribution describes “sampling
without replacement”, where we have e.g., N balls, of which
M are red, and we draw n of them without replacement, so the
population of available balls changes with each draw; the num-
ber of red balls in our sample will be a hypergeometric random
variable x whose pmf is

p(x) =

(
M
x

)(
N−M
n−x

)(
N
n

) (3.15)

(The situation described by the binomial distribution can be
thought of as “sampling with replacement”, where you put the
each ball back after drawing it, and mix things up again, so the
probability of drawing a red ball remains M/N .

The negative binomial distribution describes a situation
where instead of flipping the coin a fixed number n of times,
we decide to keep flipping until we have r heads. The random
variable X is the number of tails before the rth head. Using
the fact that there must be a string of r − 1 heads and x tails
followed by one final failure, we can show that probability mass
function is

p(x) =

(
x+ r − 1

r − 1

)
pr−1(1− p)xp =

(
x+ r − 1

r − 1

)
pr(1− p)x

(3.16)
The negative binomial distribution is important when consider-
ing the so-called “optional stopping problem”, where questions
of frequentist inference depend not just on the sequence of results
seen, but on when you were planning to stop the experiment.

The multinomial distribution is a generalization of the bi-
nomial distribution, where instead of a series of coin flips, each
with 2 possible outcomes, we have a series of trials which each
havem possible outcomes. (E.g., we roll anm-sided die n times.)
The parameters are {α1, α2, . . . , αm}, the probabilities for each
of the m outcomes. Not only must each αi lie in the range
0 ≤ αi ≤ 1, they must also sum to one:

∑m
i=1 αi = 1. We then

have m random variables K1, K2, . . . , Km with the joint pmf

p(k1, k2, . . . , km) =
n!

k1!k2! · · · km!
αk11 α

k2
2 · · ·αkmm ,

k1 = 0, 1, . . . n; k2 = 0, 1, . . . , n− k1;

· · · ; km = n− k1 − k2 − · · · − km−1 (3.17)

3.1.3 The Poisson Distribution (discrete)

Consider a random process in which discrete events happen in-
dependently of each other with an average rate of r. If we count
the number of events in an interval of duration T , that number
of events is a random quantity with an expected value of µ = rT .
We usually think of the rate r as having units of inverse time and
the duration T as having units of time. Examples of processes
with rates in time include popcorn kernels popping, clicks on a
Geiger counter, or gamma-ray bursts observed. But the interval
could also be in space, e.g., we could be counting the number
of cosmic rays collected in a detector of a certain area, or the
number of galaxies within a certain redshift range found in a
patch of sky of a given solid angle. The number K of events is
a random variable with a probability mass function

P (K = k) = p(k|µ) (3.18)

Such a process is called a Poisson process if we can sub-divide
the interval into smaller intervals (in time, space, sky position,
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or whatever) and then the number of events in each sub-interval
is an independent random variable with the same properties (but
a smaller rate, obviously).

One way to wrap our head around a Poisson process is
to think about collecting a large number M of identical
intervals, in which the expected total number of events is
Mµ, and randomly assigning each of those Mµ events to
one of the M intervals, without regard to where the other
events have been placed. The number of events landing in
any interval will be approximately6 a Poisson random vari-
able with Poisson parameter µ. See the ipython notebook
http://ccrg.rit.edu/~whelan/courses/2014_1sp_ASTP_

611/data/notes_probability_poisson.ipynb for an explo-
ration of this. (As a further investigation, try removing the
artificial factor of 200 scale-up and see how the histogram
generated only approximately tracks the Poisson pmf.)

We can calculate the pmf for the Poisson random variable
K as follows: subdivide the interval into some large number
N of identically-sized sub-intervals. Each one has an expected
number of events of µ/N . If we choose N large enough, we
can make this number very very small. This means that in any
one sub-interval, the odds are pretty good that there will be no
events. There is some small chance (of order µ/N) of seeing one
event, and a vanishingly small chance (of order [µ/N ]2) of seeing

6It’s only approximate because the total number of events is fixed to
be Mµ. To make the construction exact, we would need to generate one
Poisson random value using a Poisson distribution with mean Mµ, and
then use that number

two or more events in this sub-interval:

p (0 |µ/N ) = 1− µ/N +O
(
[µ/N ]2

)
(3.19a)

p (1 |µ/N ) = µ/N +O
(
[µ/N ]2

)
(3.19b)

∞∑
k=2

p (k |µ/N ) = O
(
[µ/N ]2

)
(3.19c)

but this is basically a single trial which can have a yes (there
is an event) or no (there is not an event) result, and the total
number K of events in the larger interval can be approximated
by a binomial random variable with N trials and a probability
for success of µ/N for each trial. That means

p(k|µ) = lim
N→∞

b(k|µ/N,N) = lim
N→∞

N !

(N − k)!k!

( µ
N

)k (
1− µ

N

)N−k
=

(µ)k

k!
lim
N→∞

(
1− µ

N

)N N !

(N − k)!
(N − µ)−k

(3.20)

Now,

N !

(N − k)!
= N(N − 1) . . . (N − k + 1) =

k−1∏
`=0

(N − `) (3.21)

and of course

(N − µ)−k =
k−1∏
`=0

1

N − µ (3.22)

so

N !

(N − k)!
(N − µ)−k =

k−1∏
`=0

N − `
N − µ =

k−1∏
`=0

1− `/N
1− µ/N (3.23)

but for finite k this is the product of a finite number of things,
each of which goes to 1 as N →∞, so

p(k|r, T ) =
(µ)k

k!
lim
N→∞

(
1− µ

N

)N
=

(µ)k

k!
e−µ . (3.24)
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This is the Poisson distribution. It’s easy to check that it’s
normalized, i.e.,

∞∑
k=0

p(k|µ) = e−µ
∞∑
k=0

(µ)k

k!
= e−µeµ = 1 . (3.25)

Note that as a consistency check we can go back and verify our
assumptions (3.19):

p(0|µ/N) = e−µ/N = 1− µ/N +O([µ/N ]2) (3.26a)

p(1|µ/N) =
µ

N
e−µ/N =

µ

N
+O([µ/N ]2) (3.26b)

∞∑
k=2

p(k|µ/N) = 1− p(0|µ/N)− p(1|µ/N) = O([µ/N ]2)

(3.26c)

We can get the mean and variance of the Poisson distribution
either by taking the limiting forms of those for the binomial
distribution, or by calculating the moment generating function:

M(t) =
∞∑
k=0

etk
µk

k!
e−µ =

(µet)k

k!
e−µ = eµe

t

e−µ = eµ(et−1) (3.27)

To find the mean and variance, it’s useful once again to use the
cumulant generating function ψ(t) = lnM(t):

ψ(t) = µ(et − 1) (3.28)

Differentiating gives us

ψ′(t) = µet (3.29)

and
ψ′′(t) = µet (3.30)

so the mean is
E(K) = ψ′(0) = µ (3.31)

(which was the definition we started with) and the variance is

Var(K) = ψ′′(0) = µ (3.32)

3.1.4 The Exponential Distribution (continuous)

Let’s consider further a Poisson process. The Poisson distribu-
tion gives the pmf for the total number of events in an interval,
which is a discrete random variable. Now consider another ques-
tion. Suppose we are observing a Poisson process with an event
rate r. Let’s assume the intervals are in time, so that r has units
of inverse time, and the number of events in a time ∆t will be
a Poisson random variable with parameter r∆t. Now suppose
we start watching at a given time and see how long we have to
wait for the next event. This waiting time T will itself be a ran-
dom variable, with a probability density function fT (t|r) which
depends on the rate r. Note that this is a continuous random
variable. We can actually work out the pdf from our knowledge
of the Poisson process. Consider the probability that T is longer
than some value t:

P (T > t) =

∫ ∞
t

fT (t′|r) dt′ (3.33)

This is the probability that in the interval of length t, begin-
ning when we start watching, there are no events. But we know
how to write the probability that there are no events from a
Poisson process in an interval of a given length. It is the prob-
ability that the corresponding Poisson random variable (which
has parameter rt) will take on the value 0:

P (K = 0) = p(0|rt) =
(rt)0

0!
e−rt = e−rt (3.34)

Equating the two expressions for this probability gives∫ ∞
t

fT (t′|r) dt′ = e−rt (3.35)

We can differentiate both sides with respect to t (not t′) and
find

− fT (t|r) = −r e−rt (3.36)
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which gives us the pdf for T , the exponential distribution:

f(t|r) = r e−rt t ≥ 0 (3.37)

It is often conventional to refer to the rate parameter as λ rather
than r, so the pdf is

f(t|λ) = λ e−λt t ≥ 0 (3.38)

The pdf looks like this:

0 1/λ 2/λ 3/λ

t

λ/2

λ

f
(t
|λ
)

Note that this derivation made use of an integral of the pdf.
For a general continuous random variable, we define the cumu-
lative distribution function

FX(x) := P (X ≤ x) =

∫ x

−∞
fX(x′) dx′ (3.39)

The derivative of the cdf is the pdf:

dFX
dx

(x) = fX(x) (3.40)

Friday, February 21, 2014

3.1.5 The Gamma Distribution (continuous)

The plot of the exponential distribution above has the same
shape regardless of the value of the parameter λ; changing its
value just changes the scales of the axes. It is, however, one
member of a family of distributions known as the Gamma dis-
tribution, with two parameters α > 0 and β > 0, and the pdf

f(x|α, β) =
1

Γ(α)βα
xα−1e−x/β 0 < x <∞ (3.41)

where

Γ(α) =

∫ ∞
0

uα−1e−u du (3.42)

is the Gamma function. If n is a non-negative integer, Γ(n+1) =
n!, and in general Γ(α + 1) = αΓ(α). Comparing the pdfs, we
see that an exponential distribution with rate λ is a Gamma
distribution with shape parameter α = 1 and scale parameter
β = 1/λ.7 Here’s the shape of the pdf for different choices of α.

7Note that some sources define the Gamma distribution in terms of
a rate parameter which they call β, but is one over our scale parameter
β. (Sources using this other convention include Wikipedia and the notes
for previous versions of this class!) When in doubt, you can fall back on
dimensional analysis. If β is a scale parameter, it will have the same units
as x, and x/β will appear in the exponential. If it were a rate parameter,
it would have units of 1/x. Note that Gregory uses the scale parameter
definition, but calls the parameter θ.
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We can check that the pdf is normalized by taking the integral

1

Γ(α)βα

∫ ∞
0

xα−1e−x/β dx =
1

Γ(α)

∫ ∞
0

(
x

β

)α−1

e−x/β
dx

β

=
1

Γ(α)

∫ ∞
0

uα−1e−u du =
1

Γ(α)
Γ(α) = 1 (3.43)

where we have made the change of variables u = x/β. The same
calculation can be done to find the mgf:

M(t) = E(etX) =
1

Γ(α)βα

∫ ∞
0

xα−1e−x/βetx dx

=
1

Γ(α)βα

∫ ∞
0

xα−1 exp

(
−
[

1

β
− t
]
x

)
dx

(3.44)

If we require t < 1
β

and make the substitution u = ( 1
β
− t)x so

x = β
1−βt u, this becomes

M(t) =
1

Γ(α)βα

(
β

1− βt

)α ∫ ∞
0

uα−1e−u du = (1− βt)−α

(3.45)
If we again construct the cumulant generating function

ψ(t) = lnM(t) = −α ln(1− βt) (3.46)

we find the derivative

ψ′(t) = αβ(1− βt)−1 (3.47)

so the mean is
E(X) = ψ′(0) = αβ (3.48)

and the second derivative

ψ′′(t) = αβ2(1− βt)−2 (3.49)

so the variance is

Var(X) = ψ′′(0) = αβ2 (3.50)

This means that in particular, and exponential distribution (for
which α = 1 and β = λ−1. has a mean of λ−1, a variance of λ−2,
and a standard deviation of λ−1.

Even more useful than the mean and variance, the mgf can
be used to show what happens when we add two independent
Gamma random variables with the same scale parameter, say
X1 with parameters (α1, β) and X2 with parameters (α2, β).

First a few words about independence, as it applies to ran-
dom variables. Just as events A and B are independent if and
only if P (A,B) = P (A)P (B), two continuous random variables
are independent if and only if their joint pdf is f(x1, x2) =
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fX1(x1)fX2(x2). This then means that if we take the expec-
tation value of some function of X1 times some function of X2,
we have

〈h1(X1)h2(X2)〉 =

∫ ∞
−∞

∫ ∞
−∞

h(x1)h(x2)f(x1, x2) dx1 dx2

=

∫ ∞
−∞

∫ ∞
−∞

h(x1)h(x2)fX1(x1)fX2(x2) dx1 dx2

=

∫ ∞
−∞

h(x1)fX1(x1) dx1

∫ ∞
−∞

h(x2)fX2(x2) dx2

= 〈h1(X1)〉 〈h2(X2)〉 if X1 & X2 independent

(3.51)

In particular, if Y = X1+X2, where X1 and X2 are independent,
the mgf of Y is

MY (t) =
〈
etY
〉

=
〈
et(X1+X2)

〉
=
〈
etX1etX2

〉
=
〈
etX1

〉 〈
etX2

〉
= MX1(t)MX2(t) if X1 & X2 independent

(3.52)

Specializing to the case described above where X1 and X2 are
two Gamma random variables with the same scale parameter β,
the mgf of their sum is

M(t) = M1(t)M2(t) = (1− βt)−α1(1− βt)−α2 = (1− βt)−(α1+α2)

(3.53)
which we see is the mgf of a Gamma random variable with pa-
rameters α1 + α2 and β. So, if you add Gamma rvs with
the same scale parameter, their sum is another Gamma
rv whose scale parameter is the sum of the individual
scale parameters.

For example, if we add n independent exponential random
variables with the same rate parameter λ, each of which is a
Gamma(1, 1/λ) random variable, their sum is a Gamma(n, 1/λ)
random variable. This special case of the Gamma distribution
(where α is an integer) is called an Erlang distribution.

3.1.6 The Gaussian (aka Normal) Distribution
(continuous)

The Gaussian distribution, also known as the normal distribu-
tion, is a distribution with location parameter µ and scale pa-
rameter σ > 0. We refer to this as a N(µ, σ2) distribution, which
has pdf

f(x|µ, σ2) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
−∞ < x <∞

(3.54)
This turns out to be a good approximation in many situations,
for reasons we’ll delve into as the course goes on, but in brief

1. It is the limiting form of many distributions, as you’ll in-
vestigate on the homework, which is mostly due to a result
we’ll see later known as the Central Limit Theorem

2. It is the natural result of a truncated Taylor expansion ei-
ther of the logarithm of a pdf about a local maximum, or
of an mgf about t = 0.

3. It is the Maximum Entropy distribution appropriate when
you know nothing but the mean and variance of a distribu-
tion defined for all x.

To show that this is normalized, we take the integral∫ ∞
−∞

f(x) dx =
1

σ
√

2π

∫ ∞
−∞

e−
(x−µ)2

2σ2 dx =
1√
2π

∫ ∞
−∞

e−z
2/2 dz

(3.55)
where we have made the substitution z = (x−µ)/σ. The integral

I =

∫ ∞
−∞

e−z
2/2 dz (3.56)

is a bit tricky; there’s no ordinary function whose derivative is
e−z

2/2, so we can’t just do an indefinite integral and evaluate at

18



the endpoints. But we can do the definite integral by writing

I2 =

(∫ ∞
−∞

e−x
2/2 dx

)(∫ ∞
−∞

e−y
2/2 dy

)
=

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2 dx dy

(3.57)

If we interpret this as a double integral in Cartesian coördinates,
we can change to polar coördinates r and φ, and write

I2 =

∫ 2π

0

∫ ∞
0

e−r
2/2 r dr dφ = 2π

∫ ∞
0

e−r
2/2 r dr

= −2π e−r
2/2
∣∣∣∞
0

= 2π

(3.58)

so

I =

∫ ∞
−∞

e−z
2/2 dz =

√
2π (3.59)

and the pdf does integrate to one.
To get the mgf, we have to take the integral

M(t) =
1

σ
√

2π

∫ ∞
−∞

exp

(
−(x− µ)2

2σ2
+ tx

)
dx (3.60)

If we complete the square in the exponent, we get

−(x− µ)2

2σ2
+ tx = − 1

2σ2

(
x− [µ+ tσ2]

)2
+

1

2σ2

(
2µtσ2 + t2σ4

)
= − 1

2σ2

(
x− [µ+ tσ2]

)2
+ µt+

t2σ2

2
(3.61)

so

M(t) =
1

σ
√

2π
eµt+

t2σ2

2

∫ ∞
−∞

exp

(
−(x− [µ+ tσ2])2

2σ2

)
dx

=
1

σ
√

2π
eµt+

t2σ2

2

∫ ∞
−∞

e−z
2/2 dz = eµt+

t2σ2

2

(3.62)

This means that the cumulant generating function is

ψ(t) = lnM(t) = µt+
σ2t2

2
(3.63)

taking derivatives gives

ψ′(t) = µ+ σ2t (3.64)

so the mean is
E(X) = ψ′(0) = µ (3.65)

and
ψ′′(t) = σ2t (3.66)

so the variance is

Var(X) = ψ′′(0) = σ2 (3.67)

which means that the parameters µ and σ are the mean and
standard deviation of the distribution, as their names suggest.
Note that this is in some sense the “simplest” possible distri-
bution with a given mean and variance. For a general random
variable, since ψ(0) = 0, ψ′(0) = E(X) and ψ′′(0) = Var(X),
the first few terms of the Maclaurin series for ψ(t) must be

ψ(t) = t E(X) +
t2

2
Var(X) +O(t3) (3.68)

Given a random variable X which follows a N(µ, σ2) distri-
bution, we can define Z = X−µ

σ
. Its pdf will be

fZ(z) = σfX(µ+ zσ) =
1√
2π
e−z

2/2 (3.69)

which is a N(1, 0) distribution, also known as a standard normal
distribution.
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The cdf of a N(µ, σ) random variable will be

F (x) =
1

σ
√

2π

∫ x

−∞
e−(u−µ)2/(2σ2) du =

1√
2π

∫ (x−µ)/σ

−∞
e−t

2/2 dt

(3.70)
again, e−t

2/2 is not the derivative of any known function, but it’s
useful enough that we define a function

Φ(z) =
1√
2π

∫ z

−∞
e−t

2/2 dt (3.71)

which is tabulated in lots of places. In terms of this, the cdf for
a N(µ, σ2) rv is

P (X ≤ x) = Φ

(
x− µ
σ

)
(3.72)

If we add two independent Gaussian random variables, X1

and X2, following N(µ1, σ
2
1) and N(µ2, σ

2
2) distributions, respec-

tively, their sum has the mgf

M(t) = M1(t)M2(t) = exp

(
tµ1 +

t2σ2
1

2

)
exp

(
tµ2 +

t2σ2
2

2

)
= exp

(
t(µ1 + µ2) +

t2(σ2
1 + σ2

2)

2

)
(3.73)

which is the mgf of aN(µ1+µ2, σ
2
1+σ2

2) distribution. (In general,
if we add independent random variables, their sum has a mean
which is the sum of the means and a variance which is the sum
of the variances, but what’s notable here is the sum obeys a
normal distribution, so it’s characterized only by its mean and
variance.

3.1.7 The Chi-Square Distribution (continuous)

Finally, suppose we have r independent Gaussian random vari-
ables {Xi} with means µi and variances σ2

i . Consider the com-
bination

Y =
r∑
i=1

(
Xi − µi
σi

)2

(3.74)

We can show that this obeys a χ2(r) distribution

fY (y) =
1

Γ(r/2)2r/2
y
r
2
−1e−y/2 (3.75)

which is a special case of a Gamma distribution with α = r and
β = 2.

First note that the sum of r independent χ2(1) random vari-
ables is a χ2(r) random variable. This is because a χ2(1)
is the same as a Gamma(1

2
, 2), and if we add r independent

Gamma(1
2
, 2) random variables, we get a Gamma( r

2
, 2) random

variable, which is a χ2(r) random variable.

Thus all we need to do to prove that
∑r

i=1

(
Xi−µi
σi

)2

is a χ2(r)

is to show that if X is N(µ, σ2), so that Z = X−µ
σ

is N(0, 1),

Y = (X−µ)2

σ
= Z2 is χ2(1). Now, since

fZ(z) =
1√
2π
e−z

2/2 −∞ < z <∞ (3.76)

we can’t quite use the usual formalism for transformation of
pdfs, since the transformation Y = Z2 is not invertible. But
since fZ(−z) = fZ(z) it’s not hard to see that if we define a rv
W = |Z|, it must have a pdf

fW (w) = fZ(−w) + fZ(w) = 2fZ(z) =
2√
2π
e−w

2/2 0 < w <∞
(3.77)
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and then we can use the transformation y = w2, w = y1/2 to
work out

fY (y) =
dP

dy
=
dP

dw

dw

dy
=

1

2
y−1/2fW (y1/2)

=
1√
2π
y−1/2e−y/2 0 < y <∞

(3.78)

If we recall the χ2(1) pdf, it was

f(y) =
1

Γ(1/2)21/2
y−1/2e−y/2 0 < y <∞ (3.79)

so the pdf of Y = Z2 is the χ2(1) pdf, if the value of Γ(1/2)
is
√
π. Now, if we think about it, that has to be the case, in

order for the two pdfs to be normalized, but we can work out
the value directly. Recall the Gamma function

Γ(α) =

∫ ∞
0

tα−1e−t dt (3.80)

which is a finite positive number for any α > 0. (For positive
integer n, we know that Γ(n) = (n− 1)!.) Thus

Γ(1/2) =

∫ ∞
0

t−1/2e−t dt (3.81)

We can show that the integral is well-behaved at the lower limit
of t = 0, and evaluate it, by changing variables to u =

√
2t so

that t = u2/2 and du = 21/2t−1/2 dt; thus

Γ(1/2) =
1√
2

∫ ∞
0

e−u
2

du =
1√
2

√
2π

2
=
√
π (3.82)

as expected. We’ve used the symmetry of the integrand to say
that ∫ ∞

0

e−u
2

du =
1

2

∫ ∞
−∞

e−u
2

du =

√
2π

2
(3.83)

3.1.8 Summary of Properties of Gamma Distribution

• If X ∼ Gamma(α, β), then 〈X〉 = αβ and Var(X) = αβ2.
The shape parameter α is dimensionless and the scale pa-
rameter β has the same units as X.

• If we add independent random variables, a Gamma(α1, β)
and a Gamma(α2, β), their sum is a Gamma(α1 + α2, β).

• If X is a Gamma(α1, β), aX is a Gamma(α1, aβ).8

• The sum of the squares of r standard normal random vari-
ables is a χ2(r), which is the same as a Gamma( r

2
, 2).

• The waiting time for the next event in a Poisson process
with rate λ is an Exp(λ) (a random variable obeying an
exponential distribution), which is a Γ(1, 1

λ
).

• The waiting time for the nth event in a Poisson process with
rate λ is a Γ(n, 1

λ
). (This special case of a Gamma distri-

bution with integer α is also called an Erlang distribution.)

8We haven’t demonstrated this one, but it is easily done either by ap-
plying a change of variables to the pdf, or by using the mgf to show that
MaX(t) =

〈
et(aX)

〉
=
〈
e(ta)X

〉
= MX(at) = (1 − βat)−α which is the mgf

of a Gamma(α, aβ)
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4 Sums of Random Variables

4.1 Mean and Variance

Consider a situation where there are two random variables X1

and X2, and we construct a new random variable which is their
sum,

T = X1 +X2 . (4.1)

If the expectation values of the random variables are

µ1 = 〈X1〉 and µ2 = 〈X2〉 (4.2)

then the linearity of the expectation value operation means that
the expectation value of their sum is

µT = 〈T 〉 = 〈X1〉+ 〈X2〉 = µ1 + µ2 (4.3)

If the random variables ave standard deviations σ1 and σ2 and
covariance Cov(X1, X2), so that〈

(X1 − µ1)2
〉

= σ2
1 (4.4a)〈

(X2 − µ2)2
〉

= σ2
2 (4.4b)

〈(X1 − µ1)(X2 − µ2)〉 = Cov(X1, X2) (4.4c)

then the variance of their sum is

σ2
T =

〈
(T − µT )2

〉
=
〈
(X1 +X2 − µ1 − µ2)2

〉
=
〈
([X1 − µ1] + [X2 − µ2])2

〉
=
〈
(X1 − µ1)2

〉
+ 2 〈(X1 − µ1)(X2 − µ2)〉+

〈
(X2 − µ2)2

〉
= σ2

1 + σ2
2 + 2 Cov(X1, X2)

(4.5)

In particular, if X1 and X2 are independent or otherwise uncor-
related, then the variance of their sum is equal to the sum of
their variances:

σ2
T = σ2

1 + σ2
2 if X1 and X2 uncorrelated (4.6)

Note that this means the standard deviations are “added in
quadrature”:

σT =
√
σ2

1 + σ2
2 if X1 and X2 uncorrelated (4.7)

This is the standard way in which uncorrelated random errors
are combined.

Note that in the special case whereX1 andX2 are independent
Gaussian random variables, we can show their sum is also a
Gaussian random variable. This is pretty quick to show using
the moment generating functions, since in this case

M(t) =
〈
eX1+X2

〉
=
〈
eX1
〉 〈
eX2
〉

= M1(t)M2(t)

= exp

(
tµ1 +

1

2
t2σ2

1

)
exp

(
tµ2 +

1

2
t2σ2

2

)
= exp

(
t(µ1 + µ2) +

1

2
t2(σ2

1 + σ2
2)

) (4.8)

Note also that this is a special case of a general linear combi-
nation of random variables

Y =
n∑
i=1

aiXi (4.9)
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for which

〈Y 〉 =
n∑
i=1

ai 〈Xi〉 (4.10)

and

Var(Y ) =
n∑
i=1

n∑
j=1

aiaj Cov(Xi, Xj) (4.11)

For example,

Var(a1X1 +a2X2) = a1
2V (X1) + 2a1a2 Cov(X1, X2) +a2

2V (X2)
(4.12)

4.2 IID Random Variables (Random Sam-
ples)

Considered now the example of N independent, identically dis-
tributed (iid) random variables {Xi} with expectation values

〈Xi〉 = µ and 〈(Xi − µ)(Xj − µ)〉 = δij σ
2 (4.13)

This is known as a random sample, and it can be used to estimate
the properties of the underlying distribution. If we construct the
sum

T =
N∑
i=1

Xi (4.14)

then an extension of the results for a pair of random variables
shows that its mean is

µT = 〈T 〉 =
N∑
i=1

µ = Nµ (4.15)

and its variance is

σ2
T =

〈
(T − µT )2

〉
=

N∑
i=1

σ2 = Nσ2 (4.16)

so its standard deviation is

σT =
√
N σ . (4.17)

If we take the average of the N random variables

X =
1

N

N−1∑
k=0

Xi =
T

N
, (4.18)

which is itself a random variable, we can see

µX =
〈
X
〉

=
〈T 〉
N

= µ (4.19)

and

σ2
X

= Var(X) = Var

(
T

N

)
=

Var(T )

N2
=
σ2
T

N2
=
Nσ2

N
(4.20)

which means
σX =

σ√
N

(4.21)

I.e., if you take the average of N iid random variables, the stan-
dard deviation is 1/

√
N times theie individual standard devia-

tion.

4.3 PDF of a Sum of Random Variables

If we consider two independent random variables X1 and X2

with (not necessarily identical) pdfs f1(x1) and f2(x2), so that
their joint pdf is

f(x1, x2) = f1(x1)f2(x2) (4.22)

and write their sum as

T = X1 +X2 (4.23)
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we can ask what the pdf fT (t) is. One way to approach this9 is
to consider the joint pdf p(t, x2). We can do this by changing
variables from x1 to t = x1 + x2; since we’re actually changing
from {x1, x2} to {t, x2}, we can treat x2 as a constant10 and
since dt = dx1 in that case,

f(t, x2) = f1(t− x2)f2(x2) . (4.24)

if we then marginalize over x2, we find

f(t) =

∫ ∞
−∞

f(t− x2) f2(x2) dx2 (4.25)

and so we see that the pdf of a sum of variables is the convolution
of their individual pdfs.

Of course, we also know that when we add independent ran-
dom variables, we multiply their mgfs. These things all tie to-
gether when you recall that the mgf is closely related to the
characteristic function, which is the Fourier transform of the
pdf. This means we’re looking at an example of the convolu-
tion theorem: when you convolve pdfs, that’s the same thing as
multiplying their Fourier transforms.

9An alternative, slick shortcut is to write

fT (t) =

∫ ∞
−∞

∫ ∞
−∞

δ(t− [x1 − x2]) f(x1, x2) dx1 dx2

10Alternatively, we can consider the Jacobian determinant

∥∥∥∥ ∂(t, x2)

∂(x1, x2)

∥∥∥∥ =

∣∣∣∣∣∣det


(
∂t
∂x1

)
x2

(
∂t
∂x1

)
x1(

∂x1

∂x1

)
x2

(
∂x1

∂x1

)
x1

∣∣∣∣∣∣ =

∣∣∣∣det

(
1 1
1 0

)∣∣∣∣ = 1

.

4.4 The Central Limit Theorem

The central limit theorem states that if {Xi} is a sample of size
n drawn from a distribution with mean E(Xi) = µ and variance
Var(Xi) = σ2, then

Zn =

∑n
i=1 Xi − nµ
σ
√
n

=
X − µ
σ/
√
n
−→ N(0, 1) (4.26)

We can prove this using the moment generating function. I’ll
show this using the cumulant generating function

ψ(t) = lnE(exp[tXi]) (4.27)

for the distribution from which the sample is drawn. We know
that ψ(0) = 0, ψ′(0) = E(Xi) = µ, and ψ′′(0) = Var(Xi) = σ2,
so we can write the truncated McLaurin series for ψ(t) as

ψ(t) = ψ(0)+ tψ′(0)+
t2

2
ψ′′(0)+o(t2) = ψ(0)+µt+

σ2t2

2
+o(t2)

(4.28)

where o(t2) is some expression such that limt→0
o(t2)
t2
→ 0; we

also sometimes write this as O(t3). We can write that more
precisely as

ψ(t) = ψ(0) + tψ′(0) +
t2

2
ψ′′(ξ(t)) = µt+

σ2t2

2
+
ψ′′(ξ(t))− σ2

2
t2

(4.29)
where ξ(t) is some number between 0 and t. Since

lim
t→0

ψ′′(ξ(t)) = ψ′′(0) = σ2 (4.30)
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the last term is indeed o(t2). Now we consider the cumulant
generating function

Ψ(t;n) = lnE(exp[tZn]) = lnE

(
exp

[
t

σ
√
n

{
n∑
i=1

(Xi − µ)

}])

= ln
n∏
i=1

E

(
exp

[
t

σ
√
n
{Xi − µ}

])
=

n∑
i=1

lnE

(
exp

[
t

σ
√
n
{Xi − µ}

])
= n

[
ψ

(
t

σ
√
n

)
− t

σ
√
n
µ

]
(4.31)

If we use the Taylor expansion (4.29) we have

Ψ(t;n) = n

[
1

2

(
t

σ
√
n

)2

ψ′′
(
ξ

(
t

σ
√
n

))]
=

t2

2σ2
ψ′′
(
ξ

(
t

σ
√
n

))
(4.32)

When we take the limit n → ∞, the argument of ψ′′() goes to
zero, and thus

lim
n→∞

Ψ(t;n) =
t2

2σ2
ψ′′(0) =

t2

2
(4.33)

which is the natural log of the mgf of a N(0, 1) random variable,
so by the mgf method we’ve shown Zn −→ N(0, 1).

Tuesday, March 11, 2014

5 Multivariate Normal Distribution

5.1 Linear Algebra: Reminders and Notation

If A is an m× n matrix:

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 (5.1)

and B is an n× p matrix,

B =


B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...
Bn1 Bn2 · · · Bnp

 (5.2)

then their product C = AB is an m × p matrix as shown in
Figure 1 so that Cik =

∑n
j=1 AijBjk.

If A is an m × n matrix, B = AT is an n × m matrix with
elements Bij = Aji:
B11 B12 · · · B1m

B21 B22 · · · B2m
...

...
. . .

...
Bn1 Bn2 · · · Bnm

 = B = AT =


A11 A21 · · · An1

A12 A22 · · · An2
...

...
. . .

...
A1n A2n · · · Anm


(5.4)

If v is an n-element column vector (which is an n× 1 matrix)
and A is an m × n matrix, w = Av is an m-element column
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C = AB =


C11 C12 · · · C1p

C21 C22 · · · C2p
...

...
. . .

...
Cm1 Cm2 · · · Cmp

 =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn



B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...
Bn1 Bn2 · · · Bnp



=


A11B11 + A12B21 + · · ·+ A1nBn1 A11B12 + A12B22 + · · ·+ A1nBn2 · · · A11B1p + A12B2p + · · ·+ A1nBnp

A21B11 + A22B21 + · · ·+ A2nBn1 A21B12 + A22B22 + · · ·+ A2nBn2 · · · A21B1p + A22B2p + · · ·+ A2nBnp
...

...
. . .

...
Am1B11 + Am2B21 + · · ·+ AmnBn1 Am1B12 + Am2B22 + · · ·+ AmnBn2 · · · Am1B1p + Am2B2p + · · ·+ AmnBnp


(5.3)

Figure 1: Expansion of the product C = AB to show Cik =
∑n

j=1 AijBjk.

vector (i.e., an m× 1 matrix):
w1

w2
...
wm

 = w = Av =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn



v1

v2
...
vn



=


A11v1 + A12v2 + · · ·+ A1nvn
A21v1 + A22v2 + · · ·+ A2nvn

...
Am1v1 + Am2v2 + · · ·+ Amnvn


(5.5)

so that wi =
∑n

j=1Aijvj.

If u is an n-element column vector, then uT is an n-element
row vector (a 1× n matrix):

uT =


u1

u2
...
un

 (5.6)

If u and v are n-element column vectors, uTv is a number,
known as the inner product :

uTv =
(
u1 u2

... un

)
v1

v2

· · ·
vn


= u1v1 + u2v2 + · · ·+ unvn =

n∑
i=1

uivi

(5.7)

If v is an m-element column vector, and w is an n-element
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column vector, A = vwT is an m× n matrix
A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 = A = vwT

=


v1

v2
...
vm

(w1 w2 · · · wm
)

=


v1w1 v1w2 · · · v1wn
v2w1 v2w2 · · · v2wn

...
...

. . .
...

vmw1 vmw2 · · · vmwn


(5.8)

so that Aij = viwj.
If M and N are n× n matrices, the determinant det(MN) =

det(M) det(N).
If M is an n×n matrix (known as a square matrix), the inverse

matrix M−1 is defined by M−1M = 1n×n = MM−1 where 1n×n
is the identity matrix

1n×n =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 (5.9)

If M−1 exists, we say M is invertible.
If M is a real, symmetric n × n matrix, so that MT = M,

i.e., Mji = Mij, there is a set of n orthonormal eigenvectors
{v1,v2, . . . ,vn} with real eigenvalues {λ1, λ2, . . . , λn}, so that
Mvi = λivi. Orthonormal means

vT
i vj = δij =

{
0 i 6= j

1 i = j
(5.10)

where we have introduced the Kronecker delta symbol δij. The
eigenvalue decomposition means

M =
n∑
i=1

λiviv
T
i (5.11)

The determinant is det(M) =
∏n

i=1 λi. If none of the eigenvalues
{λi} are zero, M is invertible, and the inverse matrix is

M−1 =
n∑
i=1

1

λi
viv

T
i (5.12)

If all of the eigenvalues {λi} are positive, we say M is positive
definite. If none of the eigenvalues {λi} are negative, we say M
is positive semi-definite.

5.2 Special Case: Independent Gaussian
Random Variables

Before considering the general multivariate normal distribution,
consider the case of n independent normally-distributed random
variables {Xi} with means {µi} and variances {σi}. The pdf for
Xi, the ith random variable, is

fi(xi) =
1

σi
√

2π
exp

(
−(xi − µi)2

2σ2
i

)
(5.13)

and its mgf is

Mi(ti) = exp

(
tiµi +

1

2
t2iσ

2
i

)
(5.14)

If we consider the random variables Xi to be the elements of a
random vector

X =


X1

X2
...
Xn

 (5.15)
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its expectation value is

E(X) = µ =


µ1

µ2
...
µn

 (5.16)

and its variance-covariance matrix is

Cov(X) = σ2 =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n

 (5.17)

which is diagonal because the different Xis are independent of
each other and therefore have zero covariance. We can thus
write the joint mgf for these random variables as

M(t) =
n∏
i=1

Mi(ti) = exp

(
n∑
i=1

[
tiµi +

1

2
t2iσ

2
i

])

= exp

(
tTµ+

1

2
tTσ2t

) (5.18)

We can also write the joint pdf

f(x) =
n∏
i=1

fi(xi) =
1√∏n

i=1 2πσ2
i

exp

(
−1

2

n∑
i=1

(xi − µi)2

σ2
i

)
(5.19)

in matrix form if we consider a few operations on the matrix
σ2. First, since it’s a diagonal matrix, its determinant is just
the product of its diagonal entries:

detσ2 =
n∏
i=1

σ2
i (5.20)

and, for that matter,

det(2πσ2) =
n∏
i=1

2πσ2
i (5.21)

Also, we can invert the matrix to get

σ−2 =


1
σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
n

 (5.22)

so
n∑
i=1

(xi − µi)2

σ2
i

= (x− µ)Tσ−2(x− µ) (5.23)

which makes the pdf for the random vector X

f(x) =
1√

det(2πσ2)
exp

(
−1

2
(x− µ)Tσ−2(x− µ)

)
(5.24)

The generalization from n independent normal random variables
to an n-dimensional multivariate normal distribution is to use
the same matrix form for M(t) and just to replace σ2, which was
a diagonal matrix with positive diagonal entries, with a general
symmetric positive semi-definite matrix. So one change is to
allow σ2 to have off-diagonal entries, and another is to allow
it to have zero eigenvalues. If σ2 is positive definite, i.e., its
eigenvalues are all positive, we can use the matrix expression
for the pdf f(x) as well. As we’ll see, if σ2 has some zero
eigenvalues, we won’t be able to define a pdf for the random
vector X.
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5.3 Multivariate Distributions

Recall that a set of n random variables X1, X2, . . .Xn can be
combined into a random vector

X =


X1

X2
...
Xn

 (5.25)

with expectation value

E(X) = µ =


µ1

µ2
...
µn

 (5.26)

and variance-covariance matrix

σ2 = Cov(X) = E([X− µ]T[X− µ])

=


Var(X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X1, X2) Var(X2) · · · Cov(X2, Xn)
...

...
. . .

...
Cov(X1, Xn) Cov(X2, Xn) · · · Var(Xn)


(5.27)

The variance-covariance matrix must be positive semi-definite,
i.e., have no negative eigenvalues. To see why that is the case,
let {λi} be the eigenvalues and {vi} be the orthonormal eigen-
vectors, so that σ2 =

∑n
i=1 viλiv

T
i. For each i define a random

variable Xi = vT
i X. It has mean E(Xi) = vT

i µ and variance

Var(Xi) = E([vT
i (X− µ)]2) = E[vT

i (X− µ)(X− µ)Tvi]

= vT
i E[(X− µ)(X− µ)T]vi = vT

i σ
2vi = λiv

T
i vi = λi

(5.28)

Since the variance of a random variable must be non-negative,
σ2 cannot have any negative eigenvalues.

Incidentally, we can see that the different random variables
{Xi} are uncorrelated, since

Cov(Xi,Xj) = E[vT
i (X− µ)(X− µ)Tvj]

= vT
i E[(X− µ)(X− µ)T]vj = vT

i σ
2vj = λjv

T
i vj = λiδij

(5.29)

Remember that Cov(Xi,Xj) = 0 does not necessarily imply that
Xi and Xj are independent. (It will, however, turn out to be the
case for normally distributed random variables.)

Note that if we assemble the {Xi} into a column vector

X =


X1

X2
...
Xn

 =


vT

1

vT
2
...

vT
n

X = ΓX (5.30)

where the matrix Γ is made up out of the components of the
orthonormal eigenvectors {vi}:

Γ =


vT

1

vT
2
...

vT
n

 =


(v1)1 (v1)2 · · · (v1)n
(v2)1 (v2)2 · · · (v2)n

...
...

. . .
...

(vn)1 (vn)2 · · · (vn)n

 (5.31)

This matrix is not symmetric, but it is orthogonal, meaning that
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ΓT = Γ−1. We can see this from

ΓΓT =


vT

1

vT
2
...

vT
n

(v1 vT
2 · · · vT

n

)

=


vT

1 v1 vT
1 v2 · · · vT

1 vn
vT

2 v1 vT
2 v2 · · · vT

2 vn
...

...
. . .

...
vT
nv1 vT

nv2 · · · vT
nvn

 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = 1

(5.32)

This matrix Γ can be thought of a transformation from the
original basis to the eigenbasis for σ2. One effect of this is that
it diagonalizes σ2:

Γσ2ΓT =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = Λ (5.33)

Finally, recall that the moment generating function is defined
as

M(t) = E(etX) (5.34)

and that if we define ψ(t) = lnM(t),

∂ψ

∂ti

∣∣∣∣
t=0

= µi (5.35)

and
∂2ψ

∂ti∂tj

∣∣∣∣
t=0

= Cov(X1, X2) (5.36)

This means that if we do a Maclaurin expansion of ψ(t) we get,
in general,

ψ(t) = tTµ+
1

2
tTσ2t + . . . (5.37)

where the terms indicated by . . . have three or more powers of
t.

5.4 General Multivariate Normal Distribu-
tion

We define a multivariate normal random vector X as a random
vector having the moment generating function

M(t) = exp

(
tTµ+

1

2
tTσ2t

)
(5.38)

We refer to the distribution as Nn(µ,σ2). Note that this is
equivalent to starting with the Maclaurin series for ψ(t) =
lnM(t) and cutting it off after the quadratic term.

We start with the mgf rather than the pdf because it applies
whether the variance-covariance matrix σ2 is positive definite
or only positive semi-definite, i.e., whether it has one or more
zero eigenvalues. To see what happens if one or more of the
eigenvalues is zero, we use the orthonormal eigenvectors {vi} of
σ2 to combine the random variables in X into n uncorrelated
random variables {Xi}, where Xi = vT

i X, which have means
E(Xi) = vT

i µ and variances Var(Xi) = λi. If we combine the
{Xi} into a random vector

X = ΓX (5.39)

where

Γ =


vT

1

vT
2
...

vT
n

 (5.40)
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is the orthogonal matrix made up out of eigenvector components,
X has mean E(X ) = Γµ and variance-covariance matrix

Cov(X ) = Λ = Γσ2ΓT =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 (5.41)

The random vector X also follows a multivariate normal distri-
bution, in this case Nn(Γµ,Λ). To show this, we’ll show the
more general result, that if X is a Nn(µ,σ2) multivariate nor-
mal random vector, A is an m× n constant matrix and b is an
m-element column vector, the random vector Y = AX + b also
obeys a multivariate normal distribution. (Note that this works
whether m is equal to, less than, or greater than n!) We prove
this using the mgf. The mgf for Y is

MY (t) = E[exp(tTY)] = E[exp(tTAX + tTb)]

= et
TbE[exp([ATt]TX)]

(5.42)

Now here is the key step. t is an m-element column vector. A
is an m × n matrix, so its transpose AT is an n × m matrix,
and the combination ATt is an n-element column vector, whose
transpose is the n-element row vector

[ATt]T = tTA (5.43)

Therefore, the expectation value in the last line above is just
the mgf for the original multivariate normal random vector X
evaluated at the argument ATt:

E[exp([ATt]TX)] = MX(ATt)

= exp

(
[ATt]Tµ+

1

2
[ATt]Tσ2[ATt]

)
= exp

(
tTAµ+

1

2
tTAσ2ATt

)
(5.44)

This makes the mgf for Y equal to et
Tb times this, or

MY (t) = exp

(
tT[Aµ+ b] +

1

2
tTAσ2ATt

)
(5.45)

which is the mgf for a normal random vector with mean Aµ+b
and variance-covariance matrix Aσ2AT, i.e., one that obeys a
Nm(Aµ+ b,Aσ2AT) distribution.

So, we return to the random vector X = ΓX, which we now
see is a multivariate normal random vector with mean Γµ and
diagonal variance-covariance matrix Λ. Its mgf is

MX (t) = exp

(
tTΓµ+

1

2
tTΛt

)
= exp

(
n∑
i=1

[tiv
T
i µ+

1

2
λit

2
i ]

)

=
n∏
i=1

exp

(
tiv

T
i µ+

1

2
λit

2
i

)
=

n∏
i=1

MXi(ti)

(5.46)

which is the mgf of n independent random variables. There are
two possibilities: either σ2 (and thus Λ) is positive definite,
which means all of the {λi} are positive, or one or more of the
{λi} are zero.

In the first case, we have the special case we considered be-
fore, n independent normally-distributed random variables, so
the joint pdf is

fX (ξ) =
n∏
i=1

fXi(ξi) =
1√

det(2πΛ)
exp

(
−1

2
(ξ − Γµ)TΛ−1(ξ − Γµ)

)
(5.47)

We can then do a multivariate transformation to get the pdf for
X = Γ−1X = ΓTX . The Jacobian of the transformation is ΓT,
whose determinant is either 1 or −1, because

1 = det 1 = det(ΓΓT) = (det Γ)2 (5.48)
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(This is true for any orthogonal matrix.) This means |det Γ| = 1,
and the pdf for X is simply

fX(x) = fX (Γx) (5.49)

If we also note that det Λ =
∏n

i=1 λi = detσ2, we see that

fX(x) =
1√

det(2πΛ)
exp

(
−1

2
Γ(x− µ)TΛ−1Γ(x− µ)

)
=

1√
det(2πσ2)

exp

(
−1

2
(x− µ)TΓTΛ−1Γ(x− µ)

)
(5.50)

But the combination ΓTΛ−1Γ is just the inverse of σ2, because

(Λ)−1 = (Γσ2ΓT)−1 = (ΓT)−1σ−2Γ−1 (5.51)

so we find that, for arbitrary positive definite symmetric σ2,

fX(x) =
1√

det(2πσ2)
exp

(
−1

2
(x− µ)Tσ−2(x− µ)

)
(5.52)

which is exactly the generalization we expected from the n-
independent-random-variable case.

On the other hand, if σ2 has one or more negative eigenval-
ues, so that detσ2 = 0, and σ−2 is not defined, that pdf won’t
make sense. In that case, consider the random variable Xi cor-
responding to the zero eigenvalue λi = 0. Its mgf is

E(etiXi) = MXi(ti) = exp

(
tiv

T
i µ+

1

2
λit

2
i

)
= exp

(
tiv

T
i µ
)

(5.53)
but the only way that is possible is if Xi is always equal to vT

i µ,
i.e., Xi is actually a discrete random variable with pmf

P (Xi = ξi) =

{
1 ξi = vT

i µ

0 otherwise
(5.54)

This is the limit of a normal distribution as its variance goes to
zero.

Returning to the case where σ2 is positive definite, so that
each Xi is an independent N(vT

i µ, λi) random variable, we can
construct the corresponding standard normal random variable

Zi = (λi)
−1/2(Xi − vT

i µ) = (λi)
−1/2vT

i (Xi − µ) (5.55)

which we could combine into a Nn(0,1) random vector

Z =


Z1

Z2
...
Zn

 (5.56)

However, it’s actually more convenient to combine them into a
different Nn(0,1) random vector

Z =
n∑
i=1

viZi = ΓTZ =
n∑
i=1

vi(λi)
−1/2vT

i (Xi−µ) = σ−1(Xi−µ)

(5.57)
with pdf

fZ(z) =
1

(2π)n/2
e−z

Tz/2 (5.58)

Thursday, March 13, 2014

5.5 Sample Mean and Sample Variance
(Student’s Theorem)

Recall the definition of a random sample {Xi|i = 1, . . . , n},
which is n independent random variables drawn from the same
distribution, and let 〈Xi〉 = µ and Cov(Xi, Xj) = δijσ

2. We
showed in class that the sample mean

X =
1

n

n∑
i=1

Xi (5.59)
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has
〈
X
〉

= µ and Var(X) = σ2/n. On the homework, you’ve
shown that the sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (5.60)

has expectation value 〈S2〉 = σ2. In addition,

Σ2 =
1

n

n∑
i=1

(Xi − µ)2 (5.61)

has expectation value 〈Σ2〉 = σ2. These are all true for any
underlying distribution.

Now, let’s consider the case where the underlying distri-
bution is Gaussian, i.e., Xi ∼ N(µ, σ2), which means that
X ∼ Nn(µe, σ21n×n), where

1n×n =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 (5.62)

is the n× n identity matrix, and

e =


1
1
...
1

 (5.63)

Since X = 1
n
eTX is a linear transformation of the Gaussian

random vector X (using the 1 × n matrix 1
n
eT), we know that

X is Gaussian-distributed, X ∼ N(µ, σ2/n), and that

X − µ
σ/
√
n
∼ N(0, 1) (5.64)

We also know that
n∑
i=1

(
Xi − µ
σ

)2

=
n

σ2
Σ2 ∼ χ2(n) (5.65)

so Σ2 ∼ Gamma(n
2
, 2
n
σ2).

To understand the distribution of S2 and its relationship to X,
we use several results which are known collectively as Student’s
theorem. (“Student” was the pseudonym of William S. Gosset,
who found these results while working in the Guinness brewery
in Dublin.) These results are:

1. X and S2 are independent random variables

2.
n∑
i=1

(
Xi −X

σ

)2

=
n− 1

σ2
S2 ∼ χ2(n− 1) (5.66)

which means that S2 ∼ Gamma(n−1
2
, 2
n−1

σ2)

3. The combination

T =
X − µ√
S2/n

(5.67)

obeys what’s known as a Student’s t-distribution with n−1
degrees of freedom. The t-distribution with ν degrees of
freedom is the distribution obeyed by the combination

Z√
W/ν

(5.68)

where Z and W are independent random variables with
Z ∼ N(0, 1) and W ∼ χ2(ν). It is a straightforward but
unenlightening calculation to show (by writing fZ,W (z, w) =
fZ(z)fW (w), changing variables to write fT,W (t, w) and
marginalizing to get fT (t) =

∫∞
0
fT,W (t, w) dw) that the

pdf of the Student t-distribution is

fT (t; ν) =
Γ(ν+1

2
)√

πν Γ(ν
2
)

(
1 +

t2

ν

)− ν+1
2

(5.69)
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If ν is very large, the t-distribution is approximately the
same as the standard normal distribution. If ν = 1, it’s
the Cauchy distribution. Note that the moment generating
function for the t-distribution doesn’t exist, since for k ≥ ν,
the integral ∫ ∞

−∞
tk
(

1 +
t2

ν

)− ν+1
2

dt (5.70)

diverges, as its integrand becomes, up to a constant, tk−ν−1

for large t.

The demonstration that Student’s theorem is true is a nice ap-
plication of the multivariate normal distribution. First, we can
write

X =
1

n

n∑
i=1

Xi =
1

n
eTX (5.71)

and

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 =
1

n− 1
(X− eX)T(X− eX) (5.72)

Note that X = 1
n
eTX and

Y = X− eX =

(
1− 1

n
eeT

)
X (5.73)

are both linear transformations of X. We can combine them
into an n+ 1-element random vector

X
X1 −X
X2 −X

...
Xn −X

 =


1
n

1
n

· · · 1
n

1− 1
n
− 1
n
· · · − 1

n

− 1
n

1− 1
n
· · · − 1

n
...

...
. . .

...
− 1
n

− 1
n
· · · 1− 1

n



X1

X2
...
Xn


=

(
1
n
eT

1− 1
n
eeT

)
X = AX

(5.74)

where A is a (n+1)×n matrix. Since the original random vector
X has µ = µe and, the transformed vector AX has expectation
value

E(AX) = Aµ =

(
1
n
eT

1− 1
n
eeT

)
µe =

(
µ
0

)
(5.75)

where we’ve used the fact that

eTe =


1
1
...
1

(1 1 · · · 1
)

= n (5.76)

and

(1− 1

n
eeT)e = e− n

n
e = 0 (5.77)

Since X has the variance-covariance matrix σ2 = σ21, the trans-
formed random vector AX has variance-covariance matrix11

Cov(AX) = Aσ2AT =

(
1
n
eT

1− 1
n
eeT

)
σ21

(
1
n
e 1− 1

n
eeT
)

= σ2

(
eTe
n2 eT

(
1− 1

n
eeT
)(

1− 1
n
eeT
)
e

(
1− 1

n
eeT
)2

)
= σ2

(
1
n

01×n
0n×1

(
1− 1

n
eeT
))

(5.78)

Where we’ve used the fact (previously noted) that 1 − 1
n
eeT

annihilated e and also that

(1− 1

n
eeT)2 = 1− 1

n
eeT− 1

n
eeT +

1

n2
eneT = 1− 1

n
eeT (5.79)

We say that a matrix with this property is a projection matrix,
in this case onto n-dimensional vectors perpendicular to e.

11Remember that A is (n + 1)× n, σ2 is n× n, and AT is n× (n− 1),
so Aσ2AT is (n+ 1)× (n+ 1).
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Since the first row and column of Cov(AX) are all zeros, ex-
cept for the diagonal element, it means that the random variable
X, which is the first element of AX, and the random vector Y
are independent, which in turn means X and S2 = 1

n−1
YTY

are independent random variables, which is part 2 of Student’s
theorem. We’ve also seen part 1, since X is a normal random
variable whose mean is the first element of E[AX], i.e., µ and
whose variance is the (1, 1) element of Cov(AX), which is σ2/n.

To see that

(n− 1)S2

σ2
=

YTY

σ2
(5.80)

is a chi-square random variable with n − 1 degrees of freedom,
consider the variance-covariance matrix

Cov(Y) =

(
1− 1

n
eeT

)
σ2 (5.81)

This is an n×nmatrix, but it is not invertable, so we can’t do the
usual trick to construct a χ2(n) random variable. It’s actually
not too hard to work out the eigenvalue decomposition of this
matrix; since (1 − 1

n
eeT)e = 0, we see that e is an eigenvector

with eigenvalue zero. Because the matrix 1− 1
n
eeT is a projector

onto the n− 1-dimensional subspace perpendicular to e, we can
choose any n−1 orthonormal vectors in that subspace, and they

will be eigenvectors with eigenvalue σ2. For example, take

v1 =



1/
√

2

−1
√

2
0
...
0
0


, v2 =



1/
√

6

1/
√

6

−2
√

6
...
0
0


, · · ·

vn−1 =



1/
√
n(n− 1)

1/
√
n(n− 1)

1/
√
n(n− 1)

...

1/
√
n(n− 1)

−(n− 1)/
√
n(n− 1)



(5.82)

If we let vn = e/
√
n, we have our complete set of orthonormal

eigenvectors, with λ1 = λ2 = · · · = λn−1 = σ2 and λn = 0. If we
define Yi = vT

i Y, then Y1,Y2, . . . ,Yn−1 are n − 1 independent
normal random variables each with variance σ2. (The last com-
bination is trivial, since vT

nY = 1√
n
eTY = 0.) This means the

following combination is a χ2(n− 1) random variable:

n−1∑
i=1

(Yi
σ

)
=

YTviv
T
i Y

σ2
=

1

σ2
YT

(
n−1∑
i=1

viv
T
i

)
Y

=
1

σ2
YT

(
1− 1

n
eeT

)
Y =

1

σ2
YTY =

n− 1

σ2
S2

(5.83)

This is point 2 of Student’s theorem.
Finally, for point 3 we construct a t-distributed random vari-

able.
X − µ
σ/
√
n

(5.84)
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is a standard normal random variable, and

n− 1

σ2
S2 (5.85)

is a χ2(n− 1), we can take

T =

X−µ
σ/
√
n√

n−1
σ2 S2/(n− 1)

=
X − µ√
S2/n

(5.86)

and it will obey a t-distribution with n− 1 degrees of freedom,
which completes the proof of Student’s theorem.

Tuesday, March 18, 2014

5.6 Reduced Chi-Squared

We know that if {Xi} are iid Gaussian random variables, i.e.,
Xi ∼ N(µi, σ

2
i ), the combination

n∑
i=1

(
Xi − µi
σi

)2

(5.87)

is a chi-squared random variable with n degrees of freedom,
χ2(n). This is often used as a goodness-of-fit test; if a model pre-
dicts that Xi ∼ N(µi, σ

2
i ), we can collect a realization of these

data, call it {xi}, and calculate

n∑
i=1

(
xi − µi
σi

)2

(5.88)

if it’s much larger than we expect for a chi-square with this
number of degrees of freedom, this casts doubt upon the model,
since

P

(
n∑
i=1

(
Xi − µi
σi

)2

> w

)
=

∫ ∞
w

fχ2(u;n) du (5.89)

For example, if we have five degrees of freedom, we’d only expect
to find a chi-square value greater than twenty 0.125% of the time:

In [1]: from scipy import stats

In [2]: stats.chi2.sf(20,5)

Out[2]: 0.0012497305630313482

We’ve seen that we can generalize this construction to the case
of a multivariate Gaussian X ∼ N(µ,σ2); if the variance-
covariance matrix is non-singular, so that σ−2 exists, we have

(X− µ)Tσ−2(X− µ) ∼ χ2(n) (5.90)

5.6.1 Minimizing χ2 over parameters

An important generalization of the chi-squared construction
comes when the model depends on some set of parameters
λ ≡ {λk|k = 1, . . . ,m} where m < n. Typically, we assume
that these parameters influence the means, not the variances, of
the normal distribution, so that we have a family of models with
µ(λ). We can then construct

w(X;λ) = [X− µ(λ)]Tσ−2[X− µ(λ)] (5.91)

for a particular realization x of the data, the chi-square w(x;λ)
will be a function of λ, and we can find the λ which satisfies
that by solving the set of m equations

0 =
∂w

∂λk
= −2

n∑
i=1

n∑
j=1

∂µi
∂λk

[
σ−2

]
ij

[xj − µj(λ)] (5.92)

for them best-fit parameters {λ̂k(x)}. The minimized chi-square

value is then w(x; λ̂(x)). In the simplifying case where the
means are a linear function of the parameters, µ = Aλ+ b, we
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can show that w(X; λ̂(X)) ∼ χ2(n − m), i.e., the constructed
quantity still obeys a chi-square distribution, but the number of
degrees of freedom is the number of data points minus the num-
ber of parameters that we fit. It is generally assumed that this
is approximately true even if the dependence on the parameters
is not linear.

To show that it works in the case where the predicted µ is
linear in the parameters, µ = Aλ + b, note that in that case
∂µi
∂λk

= Aik, which is independent of λ, and we can write the
condition for minimizing the chi-square as a matrix equation
(dividing by −2 for convenience):

0 = ATσ−2[x− µ(λ)] = ATσ−2[x−Aλ− b] (5.93)

or
ATσ−2Aλ̂(x) = ATσ−2(x− b) (5.94)

Since A is an n×m matrix (it maps m parameters into n data
values), the combination ATσ−2A is an m × m matrix. We
can assume it’s invertible, since if it’s not we don’t actually
need all m parameters to describe the model. Thus the best-fit
parameters are

λ̂(x) = (ATσ−2A)−1ATσ−2(x− b) (5.95)

and the corresponding expectation values for the data are

µ
(
λ̂(x)

)
= A(ATσ−2A)−1ATσ−2(x− b) (5.96)

Note that we may be tempted to simplify this with something
involving the matrix inverse of A, but that doesn’t exist because
A is not a square matrix. What we can do, though, is define
the matrix

P = σ−1A
[
ATσ−2A

]−1
ATσ−1 (5.97)

so that
µ
(
λ̂(x)

)
= σPσ−1x (5.98)

In fact, since
Pσ−1A = σ−1A (5.99)

we see that for any λ,

Pσ−1µ(λ) = Pσ−1Aλ = σ−1Aλ = σ−1µ(λ) (5.100)

The matrix P is not only symmetric, but it’s a projection
matrix, since

P P = σ−1A
[
ATσ−2A

]−1
ATσ−2A

[
ATσ−2A

]−1
ATσ−1

= σ−1A
[
ATσ−2A

]−1
ATσ−1 = P

(5.101)

This n×n matrix is a projector onto an m-dimensional subspace,
since

tr P = tr
(
σ−1A

[
ATσ−2A

]−1
ATσ−1

)
= tr

(
ATσ−2A

[
ATσ−2A

]−1
)

= tr 1m×m = m
(5.102)

That means that it has m eigenvectors with unit eigenvalue and
n−m eigenvectors with zero eigenvalue. Let {ui|i = 1, . . . ,m}
be a set of m orthonormal eigenvectors with unit eigenvalue and
{ui|i = m+1, . . . , n} be a set of n−m orthonormal eigenvectors
with zero eigenvalue, so that

P =
m∑
i=1

ui u
T
i (5.103)

and

1n×n −P =
n∑

i=m+1

ui u
T
i (5.104)

are projection operators onto the two orthogonal subspaces.
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Now, let λtrue be the column vector of true, unknown param-
eters. Then

Z = σ−1 [X− µ(λtrue)] (5.105)

is a vector of n independent standard normal random vari-
ables. Since {ui|i = 1, . . . , n} is an orthonormal basis, we can
also construct independent standard normal random variables
{Zi|i = 1, . . . , n} where

Zi = uT
i Z = uT

i σ
−1 (X− µ(λtrue)) (5.106)

If we take the sum of the squares of the last n − m of these
random variables, that will obey a chi-squared distribution with
n−m degrees of freedom:

Wn−m =
n∑

i=m+1

[Zi]2 = [X− µ(λtrue)]
Tσ−1

(
n∑

i=m+1

ui u
T
i

)
σ−1 [X− µ(λtrue)]

= [X− µ(λtrue)]
Tσ−1 (1n×n −P)σ−1 [X− µ(λtrue)]

(5.107)

But by (5.100) and (5.98),

(1n×n −P)σ−1 [X− µ(λtrue)] = (1n×n −P)σ−1X = σ−1X−Pσ−1X

= σ−1
[
X− µ

(
λ̂(X)

)]
(5.108)

so

Wn−m =
[
X− µ

(
λ̂(X)

)]T

σ−2
[
X− µ

(
λ̂(X)

)]
= Wred

(5.109)
which means this quantity we’ve constructed, which is χ2-
distributed with n−m degrees of freedom (in the case where the
(??) modelled expectation values are linear in the parameters,

i.e., µ = Aλ+b), is indeed the residual chi-squared w(X; λ̂(X)).
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