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1 Methods of Inference

Our studies of probability theory have primarily shown us how to
predict the outcome of experiments given some model and/or set
of parameters, to calculate P (D|H, I) where D represents the
data, H the hypothesis (possibly including parameter values)
and I represents any other background information. The goal
of statistical inference is to take the outcome of an experiment,
and say something about the validity of one or more hypotheses.

From the Bayesian point of view, this is as simple as using
Bayes’s Theorem to construct

P (H|D, I) =
P (D|H, I)P (H|I)

P (D|I)
(1.1)

In the frequentist approach, we’re not allowed to assign proba-
bilities to hypotheses, so instead we have to use P (D|H, I) to say
something about the hypothesis H once we know the value of D.
In practice, this often involves dividing up the space of possible
values of D into a region D which is in some sense “consistent”
with H, i.e., likely given H, so that

∑
D∈D P (D|H, I) is above

some threshold. But it’s a bit arbitrary to choose such regions.
After all, even if a coin is fair, the exact sequence HTTTTH-
HTHTHTT is very unlikely (one in 213), but it’s somehow more

consistent with a fair coin than a string of 12 heads and a tail
would be. So we often find ourselves constructing a statistic, a
single function of the data which we can use for a simple thresh-
old. So for example, to check if a coin is fair, given that we
flipped k heads in n tries, we could take (k − n/2)2. If this is
small, it the number of heads is close to what we’d expect from
a fair coin. This is a goodness-of-fit statistic, and the chi-square
statistics we’ve constructed so far are examples.

Another example of a statistic would be if we want to estimate
the probability parameter associated with a binomial distribu-
tion. Given k successes in n trials, we’d expect k/n to be a
sensible estimate of this parameter. This discards any informa-
tion about the order of successes and failures, and just retains
that one number.

1.1 Statistics Constructed from Data: Two
Approaches

To see how a preferred statistic might arise, let’s consider the
case where we have n data points {xi}, drawn from indepen-
dent distributions with the same unknown mean µ and different
unknown variances {σ2

i }. We are thus basically making n inde-
pendent measurements of some unknown quantity µ, each with
its own error of standard deviation σi. How can we use the
values {xi} to say something about µ?

1.1.1 Bayesian Approach: Posterior pdf

The Bayesian answer to that question is straightforward: con-
struct the posterior pdf

f(µ|{xi}, {σi}, I) =
f({xi}|µ, {σi}, I)f(µ|{σi}, I)

f({xi}|{σi}, I)
(1.2)
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(From here on, we’ll suppress the implicit conditional depen-
dence on {σi} and I in the interest of compactness of notation.)
To do this construction, we need to know the form of the joint
pdf

f({xi}|µ) =
n∏
i=1

f(xi|µ) (1.3)

so let’s add the additional assumption that the errors are Gaus-
sian, so

f(xi|µ) =
1

σi
√

2π
exp

(
−(xi − µ)2

2σ2
i

)
(1.4)

and

f({xi}|µ) =
n∏
i=1

1

σi
√

2π
exp

(
−(xi − µ)2

2σ2
i

)

=
1

(2π)n/2
∏n

i=1 σi
exp

(
−1

2

n∑
i=1

(xi − µ)2

σ2
i

) (1.5)

Although this is a pdf for the {xi}, when we substitute this
likelihood function into (1.2), we will end up with a pdf for µ,
so we’re most interested in the µ dependence, which we can see
is Gaussian, since the sum in the exponential is quadratic in µ.
We can write this in a transparent way by completing the square
and writing

χ2({xi};µ) =
n∑
i=1

(xi − µ)2

σ2
i

=
[µ− µ0({xi})]2

σ2
µ({xi})

+χ2
0({xi}) (1.6)

and solving for µ0({xi}), σ2
µ({xi}), and χ2

0({xi}) (the names of
which have been deliberately somewhat provocatively chosen).

Expanding both sides gives us

µ2

n∑
i=1

1

σ2
i

− 2µ
n∑
i=1

xi
σ2
i

+
n∑
i=1

x2
i

σ2
i

=
µ2

σ2
µ({xi})

− 2µ
µ0({xi})
σ2
µ({xi})

+
[µ0({xi})]2

σ2
µ({xi})

+ χ2
0({xi}) (1.7)

so we can solve for

1

σ2
µ({xi})

=
n∑
i=1

1

σ2
i

(1.8)

(which we see is actually independent of the data {xi} so we will
just write σµ from now on)

µ0({xi}) = σ2
µ({xi})

n∑
i=1

xi
σ2
i

=

∑n
i=1 σ

−2
i xi∑n

i=1 σ
−2
i

(1.9)

and

χ2
0({xi}) =

n∑
i=1

x2
i

σ2
i

− [µ0({xi})]2

σ2
µ({xi})

(1.10)

While χ2
0({xi}) is useful for some applications to come later in

the semester, it will turn out to be irrelevant right now, so we
don’t bother to work out the explicit form.

We can rewrite the likelihood function to stress its µ depen-
dence:

f({xi}|µ) =
e−χ

2
0({xi})/2

(2π)n/2
∏n

i=1 σi
exp

(
− [µ− µ0({xi})]2

2σ2
µ

)
(1.11)

Because the posterior pdf f(µ|{xi}) is guaranteed to be normal-
ized: ∫ ∞

−∞
f(µ|{xi}) dµ =

∫∞
−∞ f({xi}|µ) f(µ) dµ

f({xi})
= 1 (1.12)
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we can write

f(µ|{xi}) ∝ exp

(
− [µ− µ0({xi})]2

2σ2
µ

)
f(µ) (1.13)

where the {xi}-dependent proportionality constant can be
worked out from the normalization. Explicitly,

f(µ|{xi}) = C({xi}) exp

(
− [µ− µ0({xi})]2

2σ2
µ

)
f(µ) (1.14)

where

C({xi}) =
e−χ

2
0({xi})/2

f({xi})(2π)n/2
∏n

i=1 σi

=

(∫ ∞
−∞

exp

(
− [µ− µ0({xi})]2

2σ2
µ

)
f(µ) dµ

)−1 (1.15)

In particular, if the prior pdf f(µ) is constant1, the posterior is

f(µ|{xi}) =
1

σ2
µ

√
2π

exp

(
− [µ− µ0({xi})]2

2σ2
µ

)
(1.16)

In any event, no matter what the prior on µ, the essential infor-
mation about the outcome of the experiment is encoded in the
weighted average µ0({xi}).

1In practice, to have a normalizable prior, we need something like

f(µ) =

{
1

µmax−µmin
µmin < µ < µmax

0 otherwise

but in the limit µmin � µ0−σ and µmax � µ0 +σ we get the simpler result
given here.

1.1.2 Frequentist Approach: Optimal Estimator

Now let’s shift to the frequentist perspective, where we have
n random variables {Xi} with unknown mean 〈Xi〉 = µ and
known variances Cov(Xi, Xj) = δij Var(Xi) = δijσ

2
i . We want

to say something about µ, and the simplest thing we can do is
try to estimate its value. So we construct a statistic µ̂({Xi}).
This is a random variable, and for any data realization it is our
guess for the value of µ. Since it’s a random variable, it has
an expectation value. We say that µ̂ is an unbiased estimator
of µ if 〈µ̂({Xi})〉 = µ. There are a lot of possible statistics
which satisfy this requirement. For instance, we could just take
X1 and throw away the rest of the data. Or we could take the
sample mean X = 1

n

∑n
i=1Xi. Either one of these is an unbiased

estimator (since they both have expectation value µ), but we’d
expect X to do a better job of estimating µ. On the other hand,
it won’t be the best in all cases; for example, if σ2 is much less
than all the other {σi}, i.e., the second measurement is good
and the others are all lousy, we’d like to pay more attention to
X2 than the other random variables.

We’d like to consider what is the best estimator µ̂ to use. For
simplicity, let’s restrict ourselves to linear combinations of the
random variables, i.e., estimators of the form

µ̂({Xi}) =
n∑
i=1

aiXi (1.17)

the estimator will be unbiased if

〈µ̂({Xi})〉 =
n∑
i=1

aiµ = µ
n∑
i=1

ai (1.18)

is equal to µ, i.e., if
∑n

i=1 ai = 1. The variance of the estimator
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is

Var (µ̂({Xi})) =
n∑
i=1

n∑
j=1

aiaj Cov(Xi, Xj) =
n∑
i=1

a2
iσ

2
i (1.19)

The optimal estimator is the unbiased estimator with the lowest
variance, i.e., it minimizes

∑n
i=1 a

2
iσ

2
i subject to the constraint∑n

i=1 ai = 1. We can find this with the method of Lagrange
multipliers, by minimizing

n∑
i=1

a2
iσ

2
i + λ(

n∑
i=1

ai − 1) (1.20)

with respect to {ai} and λ. Taking ∂
∂ai

gives

2aiσ
2
i + λ = 0 (1.21)

so

ai = −λ
2
σ−2
i (1.22)

Taking ∂
∂λ

gives the constraint
∑n

i=1 ai = 1 so

− λ

2

n∑
i=1

σ−2
i = 1 (1.23)

i.e.,

− λ

2
=

1∑n
i=1 σ

−2
i

(1.24)

and

ai =
σ−2
i∑n

j=1 σ
−2
j

(1.25)

which makes the optimal estimator

µ̂opt({Xi}) =

∑n
i=1 σ

−2
i Xi∑n

i=1 σ
−2
i

(1.26)

and its variance

Var(µ̂opt({Xi})) =
n∑
i=1

a2
iσ

2
i =

∑n
i=1 σ

−4
i σ2

i

(
∑n

j=1 σ
−2
j )2

=
1∑n

i=1 σ
−2
i

(1.27)
but we see that this optimal estimator is just the same weighted
average that showed up in the posterior pdf for µ in the Bayesian
approach:

µ̂opt({xi}) = µ0({xi}) (1.28)

and its variance is the width of the posterior on µ in the case
where the prior is uniform and the sampling distribution is Gaus-
sian.

Var(µ̂opt({Xi})) = σ2
µ (1.29)

Tuesday, April 1, 2014

2 Parameter Estimation

Our preceding example considered two related questions about
unknown parameters

• What posterior distribution do we assign to an unknown
parameter in light of observed data, in the Bayesian frame-
work?

• How can we estimate an unknown parameter given observed
data?

In addition to the Bayesian vs frequentist issues, there are also
differences between trying to get a single point estimate of a pa-
rameter, and saying something about the uncertainty associated
with that estimate.
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2.1 Maximum likelihood estimates

As we saw previously, there are many different estimators that
could conceivably be used to try to gain information about an
unknown parameter θ. One way, in the frequentist picture, to
pick an estimate is the so-called maximum likelihood method,
which chooses the value that maximizes the likelihood function
f({xi}|θ) where {xi} are the observed data.

In the previous example, where the parameter was µ, the like-
lihood function was

f({xi}|µ) =
1

(2π)n/2
∏n

i=1 σi
exp

(
−1

2

n∑
i=1

(xi − µ)2

σ2
i

)

=
e−χ

2
0({xi})/2

(2π)n/2
∏n

i=1 σi
exp

(
− [µ− µ0({xi})]2

2σ2
µ

) (2.1)

where 1
σ2
µ

=
∑n

i=1
1
σ2
i
, µ0({xi}) =

∑n
i=1 σ

−2
i xi∑n

i=1 σ
−2
i

, and χ2
0({xi}) =∑n

i=1
x2
i

σ2
i
− [µ0({xi})]2

σ2
µ({xi}) . We can see by inspection that the likelihood

function (which happens to be a Gaussian) is maximized when
µ = µ0({xi}).

As another example, consider a random sample {Xi} of size n
drawn from an exponential distribution with rate parameter θ.
Since each random variable Xi is drawn from the pdf f(xi|θ) =
θeθxi , the likelihood function is

f({xi}|θ) =
n∏
i=1

f(xi|θ) = θne−θ
∑n
i=1 xi (2.2)

It’s actually easiest to find the θ that maximizes the likelihood
by considering the log-likelihood

`(θ) = ln f({xi}|θ) = n ln θ − θ
n∑
i=1

xi (2.3)

whose derivative is

`′(θ) =
n

θ
−

n∑
i=1

xi (2.4)

so the maximum-likelihood rate is

θ̂ =
n∑n
i=1 xi

=
1

x
(2.5)

Note that in the Bayesian approach we could simply find the
value of θ which maximizes f(θ|{xi}) ∝ f({xi}|θ)f(θ); if the
prior f(θ) is uniform, that’s the same as the maximum likeli-
hood estimate. Note, though, that if we do a change of vari-
ables on the parameter, the maximum-likelihood point won’t
change, but the maximum-posterior point will. For instance, if
we parametrize the exponential distribution in terms of a rate
parameter β = θ−1, the likelihood function is

f({xi}|β) = β−ne−
∑n
i=1 xi/β (2.6)

and the derivative of the log-likelihood is

d

dβ
ln f({xi}|β) =

−n
β

+

∑n
i=1 xi
β2

(2.7)

which is zero when

β =

∑n
i=1 xi
n

= θ̂−1 (2.8)

The reason this doesn’t work for the maximum-posterior point
is that f(θ|{xi}) is a density in θ, while f({xi}|θ) is not. On the
one hand,

fX|B(x|β) = fX|Θ(x|β−1) (2.9)

because the condition B = β is the same as the condition Θ =
β−1, but if we transform the pdf,

fB|X(β|x) =
dP

dβ
=

∣∣∣∣ dθdβ
∣∣∣∣ dPdθ = β−2fΘ|X(β−1|x) (2.10)
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(By the same token, the statement “the prior is uniform in the
parameter” depends on what the parameter is. If fΘ(θ) is a
constant, fB(β) = β−2fΘ(β−1) can’t be.

2.1.1 The Fisher information matrix

Whether we’re dealing with the likelihood function or the poste-
rior, we can ask how this function behaves in the vicinity of the
parameter value which maximizes it. Suppose, for concreteness,
we’re talking about the likelihood function L(θ) = f(x|θ). One
trick would be to Taylor expand the function near its maximum,
but this could cause trouble if we extrapolate it too far, since we
know f(x|θ) ≥ 0. So instead, we Taylor expand the logarithm
`(θ) = lnL(θ) The expansion looks like

`(θ) = `(θ̂) + (θ − θ̂)`′(θ̂) +
(θ − θ̂)2

2
`′′(θ̂) + · · · (2.11)

Now, since θ̂ maximizes `(θ), we know `′(θ̂) = 0 and `′′(θ̂) < 0.
If we truncate the expansion at the first non-trivial order, we
have

`(θ) ≈ `(θ̂)− (θ − θ̂)2

2
[−`′′(θ̂)] (2.12)

or

L(θ) ≈ L(θ̂) exp

(
−(θ − θ̂)2

2
[−`′′(θ̂)]

)
(2.13)

which is a Gaussian with width [−`′′(θ̂)]−1/2.

The second derivative −`′′(θ̂) is the one-dimensional version
of what’s known as the Fisher information matrix. In the case
where there are multiple parameters, θ ≡ {θi|i = 1, . . . ,m}, the
Taylor expansion of `(θ) = lnL(θ) = ln f(x|θ) is

`(θ) ≈ `(θ̂) +
1

2

m∑
i=1

m∑
j=1

∂2`

∂θi∂θj
(θi − θ̂i)(θj − θ̂j) (2.14)

so that

L(θ) ≈ L(θ̂) exp

(
−1

2
(θ − θ̂)TF(θ − θ̂)

)
(2.15)

where F is the Fisher matrix, which has elements

Fij = − ∂2`

∂θi∂θj
(2.16)

The Fisher matrix gives an estimate of uncertainties of the pa-
rameters. This is actually clearer to see in the Bayesian case,
where we approximate the posterior f(θ|x) as a multivariate
Gaussian, rather than just the likelihood L(θ). In that case,
F is just the inverse of the variance-covariance matrix for the
approximate multivariate Gaussian posterior:

Cov(θ) =
〈

(θ − θ̂)(θ − θ̂)T
〉
≈ F−1 (2.17)

In particular, the width of the marginal pdf for a particular
parameter is √

Var(θi) =
〈

(θi − θ̂i)2
〉
≈
√

[F−1]ii (2.18)

This is one justification for the practice, used in both frequentist
and Bayesian contexts, of quoting

√
[F−1]ii as the one-sigma

uncertainty for the parameter θi.
Note that if the Fisher matrix has off-diagonal elements, it’s

important to take the diagonal elements of the inverse Fisher
matrix rather than one over the diagonal elements of the Fisher
matrix, since [

F−1
]
ii
6= 1

Fii
(2.19)

In general (Fii)
−1/2 will be an underestimate of the correct error

([F−1]ii)
1/2

, as you showed in your consideration of the bivariate
Gaussian distribution on the homework.
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2.2 Interval estimation

Beyond finding some “most likely” parameter value and describ-
ing the shape of either the likelihood function or the posterior
around that value, an important task in parameter estimation
is to provide an interval that we associate quantitatively with
likely values of the parameter. This can be extended to a region
in a multidimensional parameter space. The biggest difference
between the Bayesian and frequentist versions of these intervals
turns out to be the interpretation.

Thursday, April 3, 2014

2.2.1 Bayesian plausible intervals

We start with the Bayesian version, which is considerably more
straightforward. Given a posterior pdf f(θ|x), we can construct
a plausible interval in which we think θ is likely to lie with some
probability 1− α, defined by

P (θ` < θ < θu) =

∫ θu

θ`

f(θ|x) dθ = 1− α (2.20)

So this means the area under the posterior pdf, between θ` and
θu, is 1 − α. This does leave the freedom to choose where the
interval begins. Some convenient choices are

• A lower limit (one-sided plausible interval), so P (θ` < θ) =
1− α.

• An upper limit (one-sided plausible interval), so P (θ <
θu) = 1− α.

• A symmetric two-sided plausible interval, so P (θ < θ`) =
α/2 = P (θu < θ).

• A plausible interval centered on the mode θ̂ of the posterior,
so P (θ̂ − ∆θ

2
< θ < θ̂ + ∆θ

2
) = 1− α.

• The narrowest possible plausible interval, i.e., of all of the
intervals with P (θ` < θ < θu) = 1 − α, pick the one that
minimizes θu−θ`. You can show that a necessary condition
for this is f(θ`|x) = f(θu|x).

2.2.2 Frequentist confidence intervals

In the frequentist picture we can’t assign a probability to the
statement that a particular interval contains or doesn’t contain
an unknown parameter. It either does or it doesn’t. So instead
we can define a procedure to generate an interval such that if
you collect many random data sets and make such an interval
from each, some fraction of those intervals will contain the true
parameter value. This is known as a (frequentist) confidence
interval. It’s a pair of statistics L = L(X) and U = U(X)
chosen so that the probability that the parameter θ lies between
them is 1− α (e.g., if α = 0.10, it is 90%):2

P (L < θ < U) = 1− α (2.21)

It’s important to note that the probabilities here refer to the
randomness of L and U , and not to the unknown θ. From the
frequentist perspective, we can’t talk about probabilities for dif-
ferent values of θ; it has some specific value, even if it’s unknown.
What’s random is the sample X and the statistics L and U cre-
ated from it.

Given a particular realization x of the sample X, we have a
specific confidence interval between ` = L(x) and u = U(x).
Note that the probabilistic statements do not actually refer to
the properties of a particular confidence interval (`, u) but to
the procedure used to construction of the confidence interval.

2We’re implicitly considering a two-sided confidence interval, so we also
have P (θ < L) = α/2 and P (U < θ) = α/2.
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One method to construct the confidence interval is to choose
a statistic T = T (X; θ), known as a pivot variable, whose prob-
ability distribution is a known function of the parameters, and
construct an interval using the percentiles of the distribution

P (a < T (X; θ)< b) = 1− α (2.22)

By algebraically solving the inequalities a < T (X; θ) and
T (X; θ)< b for θ, we should be able to write

P (L(X)< θ < U(X)) = 1− α (2.23)

Note that this construction is not unique; different choices for
the pivot variable will give different confidence intervals with
the same confidence.

2.2.3 Example: Mean of a Normal Distribution

To illustrate the pivot variable method, consider the case where
X is a sample of size n drawn from a N(µ, σ) distribution with
both µ and σ unknown, where we want a confidence interval on
µ. The pivot variable should depend on µ and X but not σ, so

Z =
X − µ
σ/
√
n

(2.24)

will not work, even though we know it obeys as N(0, 1) distribu-
tion (because X obeys a normal distribution with E(X) = µ and
Var(X) = σ/

√
n. Fortunately, we know from Student’s theorem

that

T =
X − µ√
S2/n

(2.25)

obeys a t distribution with n − 1 degrees of freedom. This will
work as a pivot variable, since

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (2.26)

depends only on the sample, and requires no knowledge of µ or
σ. Having identified a pivot variable which obeys a t distribution
is useful not so much because we know the precise form of the
pdf

fT (t; ν) =
Γ([ν + 1]/2)√
νπΓ(ν/2)

(
1 +

t2

ν

)−[ν+1]/2

(2.27)

but because it’s a standard distribution for which the percentiles
are tabulated in various books or available in R, scipy, etc. The
90th percentile, for example, of a t distribution with ν degrees of
freedom is written t0.1,ν ; in general, the (1−α)×100th percentile
tα,ν is defined by

1− α = P (T ≤ tα,ν) =

∫ tα,ν

−∞
fT (t; ν) dt (2.28)

or equivalently by ∫ ∞
tα,ν

fT (t; ν) dt = α (2.29)

Since we want a two-sided confidence interval, we actually need
tα/2,ν and t1−α/2,ν . Since the t distribution is symmetric, though,

9



we can take advantage of the fact that t1−α/2,ν = −tα/2,ν , e.g.,
the 5th percentile is minus the 95th:

Thus, returning to the case of the pivot variable T , which is
t-distributed with n− 1 degrees of freedom,

1− α = P (−tα/2,n−1 < T < tα/2,n−1)

= P

(
−tα/2,n−1 <

X − µ√
S2/n

< tα/2,n−1

)
(2.30)

Doing a bit of algebra, we can see that

X − µ√
S2/n

< tα/2,n−1 (2.31)

is equivalent to

X − tα/2,n−1

√
S2

n
< µ (2.32)

and

− tα/2,n−1 <
X − µ√
S2/n

(2.33)

is equivalent to

µ < X + tα/2,n−1

√
S2

n
(2.34)

so

P

(
X − tα/2,n−1

√
S2

n
< µ <X + tα/2,n−1

√
S2

n

)
= 1− α

(2.35)
which defines a confidence interval for µ.

Tuesday, April 8, 2014

3 Model Selection

3.1 Frequentist hypothesis testing

See Gregory, Chapter 7
Often want to evaluate hypothesis H in light of observed data

x, or compare hypotheses
In Bayesian picture, can define P (H|x) and evaluate e.g.,

P (H1)
P (H2)

So far, we’ve considered methods to get a handle on the un-
known parameter(s) θ of a probability distribution f(x; θ) given
that we draw a sample X from that distribution, with joint pdf

fX(x1, x2, . . . , xn; θ) =
n∏
i=1

f(xi; θ) (3.1)

and find a particular realization X = x. Now we want to con-
sider how to use the realization of the sample to distinguish
between two competing hypotheses about what the underlying
distribution f(x) is. In principle the differences could be qual-
itative, but for simplicity we’ll assume that there is one family
f(x; θ) parametrized by θ which lies somewhere in a region Ω
and then take the hypotheses to be:

10



• H0: the distribution is f(x; θ) where θ ∈ ω0.

• H1: the distribution is f(x; θ) where θ ∈ ω1.

Typically, H0 represents the absence of the effect we’re looking
for, and is known as the null hypothesis, while H1 represents the
presence of the effect, and is known as the alternative hypothesis.

For example, suppose someone claims to have extrasensory
perception, and to be able to use their telepathic powers to de-
termine the suits of cards drawn from a deck. For simplicity,
assume we shuffle the deck after each draw. Then the data {Xi}
are a sample drawn from a Bernoulli distribution, with each Xi

having some probability θ of being correct. The null hypothesis
H0 is that the person does not have ESP, and has a 25% chance
of guessing each suit correctly, so θ = 0.25. The alternative hy-
pothesis H1 is that they can determine the suit more accurately
than by random chance (but perhaps not perfectly), so θ > 0.25.

As another example, suppose that someone claims that when
twins are born, the birth weight of the first twin is on average
greater than that of the second. We could take the data {Xi} to
be the difference between the birth weights of the two twins, and
assume that the weights are normally distributed with unknown
variance. Then the null hypothesis H0 is that f(x) is a normal
distribution with mean µ = 0 and standard deviation σ > 0,
while the alternative hypothesis H1 is that f(x) is a normal
distribution with mean µ > 0 and standard deviation σ > 0.
(In this case there is a vector of parameters θ = (µ, σ).

A hypothesis test is simply a rule for choosing between the
two hypotheses depending on the realization x of the sample X.
Stated most generally, we construct a critical region C which is
a subset of the n-dimensional sample space D. If X ∈ C, we
“reject the null hypothesis H0”, i.e., we favor H1. If X /∈ C, i.e.,
X ∈ Cc we “accept the null hypothesis H0”, i.e., we favor H0

over H1. Now of course, since X is random, there will be some
probability P (X ∈ C; θ) that we’ll reject the null hypothesis,

which depends on the value of θ. If the test were perfect, that
probability would be 0 if H0 were true, i.e., for any θ ∈ ω0, and
1 if H1 were true, i.e., for any θ ∈ ω1, but then we wouldn’t be
doing statistics. So instead there is some chance we will choose
the “wrong” hypothesis, i.e., some probability that, given a value
of θ ∈ ω0 associated with H0, the realization of our data will
cause us to reject H0, and some probability that, given a value
of θ ∈ ω1 associated with H1, the realization of our data will
cause us to accept H0. As a bit of nomenclature,

• If H0 is true and we reject H0, this is called a Type I Error
or a false positive.

• If H1 is true and we reject H0, we have made a correct
decision (true positive).

• If H0 is true and we accept H0, we have made a correct
decision (true negative).

• If H1 is true and we accept H0, this is called a Type II Error
or a false negative.

Typically, a false positive is considered worse than a false nega-
tive, so usually we decide how high a false positive probability
we can live with and then try to find the test which gives us the
lowest false negative probability.

Given a critical region C, we’d like to talk about the associated
false positive probability α and false negative probability 1 −
γ, but we have to be a bit careful, since H0 and H1 are in
general composite hypotheses. This means that each of them
corresponds not to a single parameter value θ and thus a single
distribution, but rather to a range of values θ ∈ ω0 or θ ∈ ω1.
So both α and γ may depend on the value of θ. We take the
false alarm probability α to be the worst-case scenario within
the null hypothesis

α = max
θ∈ω0

P (X ∈ C; θ) (3.2)

11



This is also called the size of the critical region C. Somewhat
confusingly, it’s also referred to as the significance of the test.
This is a bit counter intuitive, since a low value of α means
the probability of a false positive is low, which means a positive
result is more significant than if α were higher. It is the proba-
bility that we’ll falsely reject the null hypothesis H0, maximized
over any parameters within the range associated with H0. On
the other hand, since the alternative hypothesis almost always
has a parameter θ associated with it, we define the probability
of correctly rejecting the null hypothesis (which is one minus the
probability of a false negative) as a function of θ:

γC(θ) = P (X ∈ C; θ), θ ∈ ω1 (3.3)

We explicitly consider this as a function of the critical region C,
since we might want to compare different tests with the same
false alarm probability α (critical regions with the same size α)
to see which is more powerful.

3.2 Example: Binomial Proportion

To give a concrete example, consider the ESP test described
above. We let the would-be psychic predict the suit of n cards,
count the total number of successes Y =

∑n
i=1Xi, and reject the

null hypothesis if Y > k where k is some integer we’ve chosen,
with k > n/4. For both of the hypotheses, Y is a binomial
random variable, so

P (Y > k) =
n∑

i=k+1

(
n

i

)
θi(1− θ)n−i = 1− F (k; θ) (3.4)

where

F (k; θ) =
k∑
i=0

(
n

i

)
θi(1− θ)n−i (3.5)

is the cdf of a binomial distribution b(n, θ). For the null hypoth-
esis θ = 0.25 and for the alternative hypothesis 0.25 < θ < 1.
Thus the false alarm probability is

α = 1− F (k; 0.25) (3.6)

and the power of the test is

γk(θ) = 1− F (k; θ) (3.7)

If we make the threshold k higher, we get a lower false alarm
probability α, but we also get a less powerful test.

As a concrete example, suppose that n = 20, and we set a
threshold of k = 8. We can use scipy, invoked by

ipython --pylab

to calculate the false alarm probability

In [1]: from scipy.stats import binom

In [2]: n = 20

In [3]: k = 8

In [4]: alpha = 1 - binom.cdf(k,n,0.25); alpha

Out[4]: 0.04092516770651855

So α ≈ 0.041 = 4.1%. The power γ(θ) depends on the strength
of the ESP effect, but suppose θ = 0.50, that the psychic has a
1 in 2 chance rather than 1 in 4 of picking the right suit. Then
we can calculate the power:

In [5]: gamma_50 = 1 - binom.cdf(k,n,0.50); gamma_50

Out[5]: 0.74827766418457031

so γ(0.50) ≈ 0.748 = 74.8%.
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3.2.1 Aside: ROC Curves

We could make the test more powerful by lowering the threshold
k, but then we would also increase the false alarm probability
α. A useful construction is the receiver operating characteristic
curve, or ROC curve for short. Given a value of θ, we plot α
versus γ(θ) for a range of threshold values k. We can do this
with matplotlib as well, using the arange function to generate
an array of integer values for k between 0 and 19:

In [6]: k = arange(20)

In [7]: alpha = 1 - binom.cdf(k,n,0.25)

In [8]: gamma_50 = 1 - binom.cdf(k,n,0.50)

In [9]: plot(alpha,gamma_50,’ks’);

In [10]: xlabel(r’False alarm $\alpha$’);

In [11]: ylabel(r’Power $\gamma(0.50)$’);

In [12]: plot([0,1],[0,1],’k--’);

In [13]: savefig(’roc.eps’);

The plot looks like this:

0.0 0.2 0.4 0.6 0.8 1.0
False alarm α

0.0

0.2

0.4

0.6

0.8

1.0

Po
w
er
 γ
(0
.5
0)

The diagonal line is γ = α; we don’t expect any sensible test to
lie below this line, since it would mean that we were more likely
to reject H0 when it’s true than when H1 is true!

3.3 Example: Mean of a Normal Distribution

Consider the second example, where X is a random sample of
size n from a normal distribution, where the null hypothesis
H0 is µ = 0 and the alternative hypothesis H1 is µ > 0. For
simplicity, let’s assume that the variance σ2 is actually known.
(If the sample is large enough, we can use the sample variance
s2 as an estimate.) From our work on confidence intervals, we
know that

P

(
X − µ
σ/
√
n
> zα

)
= α (3.8)

So if we define a critical region

C ≡ X

σ/
√
n
> zα (3.9)
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this will correspond to a test with false alarm rate α. The power
of the test for a given true value of µ is

γ(µ) = P

(
X

σ/
√
n
> zα

)
= P

(
X − µ
σ/
√
n
> zα −

µ

σ/
√
n

)
= 1− Φ

(
zα −

µ

σ/
√
n

)
= Φ

(
µ

σ/
√
n
− zα

) (3.10)

3.3.1 p-Values

In this example, as in the last one, we actually have a family
of tests, parametrized by a threshold which we could imagine
varying. Given a data realization x, and in particular a sample
mean x, we will reject H0 if x > zασ/

√
n. This means there

will be some values of the false alarm probability α for which we
reject H0, and some for which we do not. One convenient way
to report which tests would indicate a positive result (reject the
null hypothesis) is to quote the α of the most stringent test for
which H0 would be rejected. Put another way, we ask, given a
measurement (in this case x), how likely is it that we would find
a measurement at least this extreme, just by accident, if the null
hypothesis were true. This is known as the p-value, and in this
case it is defined as

p = P (X≥x;µ = 0) = 1−Φ

(
x

σ/
√
n

)
= Φ

(
− x

σ/
√
n

)
(3.11)

A lower p value means that the results were less likely to have
occurred by chance in the absence of a real effect (i.e., if the
null hypothesis H0 were true). Typically if p < 0.05, the result
is considered interesting and worth future study.3

3However, if we test for many different effects, or test many different
data sets, and only report the result with the lowest p value, we can greatly
overstate the significance of our results. See http://xkcd.com/882/.

Note that the p value is often misinterpreted. It does not
represent the probability that the null hypothesis is true (we
cannot evaluate such a probability in frequentist inference). A
p value of 0.01 simply means, for the statistic we decided to
measure, if we repeated the test on many systems for which the
null hypothesis was true, we’d get a measurement as extreme,
or more, as the one we got, one percent of the time.

Thursday, April 10, 2014

3.4 Odds ratio and Bayes factor

See Gregory, Section 3.5 and Sivia, Chapter 4
One of the problems about using a frequentist test like a chi-

squared test to assess the validity of a model is that you can
always make the fit better by adding more parameters to the
model. In the extreme case, if you have as many model param-
eters as data points, you can make the fit perfect. But clearly a
model which is “overtuned” in this way is scientifically unsatis-
fying.

Bayesian statistics offers a natural way to compare models,
which automatically penalizes models that use too many pa-
rameters to fine-tune themselves to match a data set. This is
known as the odds ratio.

Consider Bayes’s theorem in the context of a model M with
parameters θ. Given an observation x, we can construct the
posterior pdf for the parameters θ as follows

f(θ|x,M) =
f(x|θ,M)f(θ|M)

f(x|M)
(3.12)

which is sometimes abbreviated as

(posterior) =
(likelihood)(prior)

(evidence)
(3.13)
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So far we’ve just treated the denominator as a normalization
factor

f(x|M) =

∫
dθ f(x|θ,M)f(θ|M) (3.14)

but we will now see how it gets the name “evidence”. Note that
it is the overall probability to get the observed result x given
the model M, marginalizing over the parameters θ.

Now, consider the case where M is one of a number of pos-
sible models, and we’d like to construct a posterior probability
P (M|x) that M is the correct model. Well, since we have a
way to calculate f(x|M), we can try using Bayes’s theorem:

P (M|x) =
f(x|M)P (M)

f(x)
(3.15)

The right-hand side has a couple of things that are harder to
get a handle on: the prior probability P (M) of M being the
correct model, and the overall pdf f(x) which requires somehow
marginalizing over all possible models. The usual way around
this is to consider two competing models M1 and M2, and to
calculate the ratio of their posteriors, known as the odds ratio

O12 =
P (M1|x)

P (M2|x)
=
f(x|M1)P (M1)

f(x|M2)P (M2)
=

(
f(x|M1)

f(x|M2)

)(
P (M1)

P (M2)

)
=

(
P (M1)

P (M2)

)
B12

(3.16)

So the factor of f(x) has cancelled out, and the odds ratio O12

is the ratio of prior probabilities for each model times something
known as the Bayes factor

B12 =
f(x|M1)

f(x|M2)
(3.17)

which is the ratio of the “evidence” in each of the models. It
represents how our relative confidence in the two probabilities
has changed with the measurement x. If each model has some
parameters, the Bayes factor can be written as

B12 =

∫
dθ1 f(x|θ1,M1) f(θ1|M1)∫
dθ2 f(x|θ2,M2) f(θ2|M2)

(3.18)

To see how the Bayes factor penalizes modes for over-tuning,
consider a simple case where there are two models: M0, which
has no parameters and M1, which has a parameter θ. If we
measure data x, the Bayes factor comparing the two models is

B10 =

∫∞
−∞ dθ f(x|θ,M1) f(θ|M1)

f(x|M0)
(3.19)

To get a handle on what the marginalization of the param-
eter θ does, as compared with the maximization done by the
frequentist method, let’s make some simplifying assumptions.
First let’s assume the likelihood f(x|θ,M1), seen as a function
of θ, can be approximated as a Gaussian about the maximum
likelihood value θ̂:

f(x|θ,M1) ≈ f(x|θ̂,M1) e−(θ−θ̂)/2σ2
θ (3.20)

We’ll also assume that this is sharply peaked compared to the
prior f(θ|M1) and therefore we can replace θ in the argument

of the prior with θ̂, and∫ ∞
−∞

dθ f(x|θ,M1) f(θ|M1) ≈ f(x|θ̂,M1) f(θ̂|M1)

∫ ∞
−∞

dθ e−(θ−θ̂)/2σ2
θ

= f(x|θ̂,M1) f(θ̂|M1)σθ
√

2π

(3.21)

We can then approximate the Bayes factor as

B10 =
f(x|θ̂,M1)

f(x|M0)

σθ
√

2π

[f(θ̂|M1)]−1
(3.22)
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The first factor is the ratio of the likelihoods between the best-fit
version of modelM1 and the parameter-free modelM0. That’s
basically the end of the story in frequentist model comparison,
and we can see that if M0 is included as a special case of M1,
this ratio will always be greater or equal to one, i.e., the tunable
model will always be able to find a higher likelihood than the
model without that tunable parameter. But in Bayesian model
comparison, there is also the second factor:

σθ
√

2π

[f(θ̂|M1)]−1
“Occam factor” (3.23)

This is called the Occam factor because it implements Occam’s
razor, the principle that, all else being equal, simpler explana-
tions will be favored over more complicated ones. Because the
prior f(θ|M1) is normalized, [f(θ̂|M1)]−1 is a measure of the
width of the prior, i.e., how much parameter space the tunable
model has available to it. In particular, if the prior is uniform
over some range:

f(θ|M1) =

{
1

θmax−θmin
θmin < θ < θmax

0 otherwise
(3.24)

then the Occam factor becomes

σθ
√

2π

θmax − θmin

(3.25)

because we assumed the likelihood function was narrowly peaked
compared to the prior, the Occam factor is always less than one,
and the tunable model must have a large enough increase in
likelihood over the simpler model in order to overcome this.

Tuesday, April 15, 2014

4 Advanced Topic: Monte Carlo

Methods

Monte Carlo, in general, refers to calculations carried out with
random or pseudo-random elements. (The name refers to the
Monte Carlo Casino in Monaco.) There are a number of different
such methods, but we’ll focus on two:

1. Monte Carlo simulations to test the validity of a statistical
method

2. Markov Chain Monte Carlo (MCMC) procedures to esti-
mate the results of high-dimensional integrals

4.1 Monte Carlo Simulations

1. For each iteration:

(a) Randomly generate values using assumed distributions

(b) Calculate statistics of interest

2. Histogram statistics (e.g., on what fraction of iterations is
the χ2 above some threshold)

3. Compare observed frequencies of statistic values to pre-
dicted distribution of statistic

Note: how to simulate a random variable with a specified pdf
f(x):

1. Easy way/cheating: use statistical package, e.g.,
scipy.stats.norm(loc=mu,scale=sigma,size=n)

2. General approach: given cdf F (x) =
∫ x
−∞ f(x′) dx′, invert to

get x = F−1(P ) for 0 < P < 1. Generate uniform random
number α and take x = F−1(α).
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For multivariate distributions, things may be more compli-
cated. If the random vector X is a random sample, we can
generate each independent X using the inverse cdf as above. If
it’s a multivariate normal X ∼ Nm(µ,σ2), we can resolve X
along the eigenvectors of σ2 and

Example: Testing the χ2 for a multinomial (see notebook).

Thursday, April 24, 2014

4.2 Markov Chain Monte Carlo

4.3 Problem to be solved

We often want to evaluate multidimensional sums or integrals
involving a probability distribution, for instance to calculate an
expectation value

〈h(X)〉 =

∫
· · ·
∫
h(x) f(x) dmx (4.1)

or a marginalized posterior

f(x1, x2|D, I) =

∫
· · ·
∫
f(x1, x2, x3, · · · , xm) dx3 · · · dxm

(4.2)
or even to get the normalization constant when we know that
f(x) ∝ g(x), so that

f(x) =
g(x)∫

· · ·
∫
g(x′) dmx′

(4.3)

If the dimension of the space we’re integrating is too high, a
traditional numerical sum or integral will be impractical. For
instance, if we have 15 parameter values, even just a grid 10
points on a side would have 1015 points.

Another approach would be to randomly pick points xi from
a uniform distribution in the space of interest and approximate
the expectation value with a weighted average

〈h(X)〉 ≈
∑

i h(xi)g(xi)∑
i g(xi)

(4.4)

but for many probability distributions, we’ll waste a lot of points
in regions where the integrand is small.

The Markov Chain Monte Carlo, or MCMC, method is a way
to generate a string of points whose long-term frequency agrees
with the probability distribution, so we can evaluate the inte-
grals as sums over points in the chain:

〈h(X)〉 ≈ 1

N

N∑
i=1

∑
i

h(xi) (4.5)

We no longer need to weight by the probability density, since
the points {xi} themselves are already distributed according to
that density.

4.3.1 Metropolis-Hastings method

The so-called Metropolis-Hastings4 approach follows the follow-
ing recipe:

1. Pick any point in parameter space to be x0

2. Repeat the following:

(a) Randomly generate a proposed new point y using some
probability distribution q(y|xi)

4Metropolis [Journal of Chemical Physics 21, 1087 (1953)] developed
the method under the assumption of a symmetric proposal distribution
q(x|y) = q(y|x); Hastings [Biometrika 57, 97 (1970)] put in the extra
factors needed to generalize to asymmetric proposal distributions.
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(b) Evaluate the probability or probability density at the
old an new points, f(xi) and f(y).

(c) If f(y)q(xi|y) ≥ f(xi)q(y|xi), choose xi+1 = y.

(d) If f(y)q(xi|y) < f(xi)q(y|xi), make the decision prob-
abilistically:

• With probability f(y)q(xi|y)
f(xi)q(y|xi) , choose xi+1 = y.

• With probability 1− f(y)q(xi|y)
f(xi)q(y|xi) , choose xi+1 = xi.

Each value in the chain will be correlated with the previous
value, and the behavior will therefore be influenced by the start-
ing point. But after an initial “burn-in” period, the chain should
settle down into a steady-state where we visit each point with a
frequency given by the probability density f(x).

4.3.2 MCMC example: multinomial distribution

Gregory gives some examples of MCMC procedures using con-
tinuous distributions, but for variety and simplicity I’ll consider
a discrete distribution, the multinomial distribution, so the pmf
we’re interested in is

p(x1, . . . , xk) =
n!

x1! · · ·xk!
αx1

1 · · ·α
xk
k (4.6)

where {xi|i = 1, . . . , k} are all non-negative integers with∑k
i=1 xi = n and {αi|i = 1, . . . , k} are known parameters be-

tween 0 and 1, with
∑k

i=1 αk = 1. This is most interesting when
k is large, i.e., if we’re jumping around a high-dimensional space.
However, it’s easier to visualize on a lower-dimensional space, so
consider the case where k = 3, n = 4 and {αi} = {1

2
, 1

4
, 1

4
.

We’ll also introduce a very simple proposal distribution: ran-
domly pick two different indices j and `, and let yj = xj + 1 and
y` = x` − 1, with the other elements of y the same as those of
x. For our trinomial case, this just means take a step randomly
forwards or back in one of the three possible directions.

We explore this with the ipython notebook http:

//ccrg.rit.edu/~whelan/courses/2014_1sp_ASTP_611/

data/notes_inference_mcmctrinomial.ipynb

4.3.3 Why the method works

4.3.4 Tips and pitfalls

Tuesday, April 29, 2014

5 Estimating Rates from Counting

Experiments

See Gregory, Chapter 14
A common experiment in Physics and Astronomy involves

counting observed events (including, in principle, photons within
a spectral channel) and trying to estimate the rate associated
with the underlying process. This is often complicated by the
presence of background events which are not produced by the
process in question (as opposed to the foreground events we’re
interested in). Three common scenarios, of increasing complex-
ity are:

1. We observe k events in a time T and want to infer the rate
r associated with those events.

2. We know the background rate b and want to infer the fore-
ground (or signal) rate s = r − b from the observation.

3. Both the foreground rate s and the background rate b are
unknown, and we make observations both on-source (where
the rate will be s+b) and off-source (where only background
events will be present, and the rate will be b).

In all of these cases, the number of events observed should
obey a Poisson with a mean equal to the rate times the obser-
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vation time,

p(k|r, I) =
(rT )k

k!
e−rT (5.1)

We’ll mostly consider Bayesian approaches to these problems,
but also keep the frequentist prescriptions in mind.

5.1 Case 1: No background

5.1.1 Frequentist approaches

Frequentist statistics doesn’t allow us to define probabilities for
the rate r to lie in an interval, but it does allow constructions
like the maximum likelihood estimate, which turns out to be

r̂ =
k

T
(5.2)

or a confidence interval at confidence level α, defined by

P (R` ≤ r ≤ Ru) = α (5.3)

where R` = `(K) and Ru = u(K) are statistics constructed
from the random variable K. The measured confidence interval
is then [`(k), u(k)] For example, if we are simply interested in
an upper limit, so that r` = 0, we want

α = P (r ≤ u(K)) = P (u−1(r) ≤ K) =
∞∑

j=u−1(r)

(rT )j

j!
e−rT

(5.4)
This looks like a pretty confusing way to define the function
u−1(r), but remember, we’re interested in u(k) for the actual
measured k, so it means that if we evaluate (5.4) for r = u(k)
(which we can do since it’s supposed to be true for any r), we
get

α =
∞∑
j=k

(u(k)T )j

j!
e−u(k)T = 1−

k−1∑
j=0

(u(k)T )j

j!
e−u(k)T (5.5)

which is now an equation which can be solved for any k > 0.
For example, for k = 1 it gives us

α = 1− e−u(1)T (5.6)

so

u(1) =
ln 1

1−α

T
; (5.7)

for k = 2 it says

α = 1− [1 + u(2)T ]e−u(2)T (5.8)

which is a transcendental equation, but we can solve it numeri-
cally for u(2)T , given α.

5.1.2 Bayesian Approach

As usual, the Bayesian approach to the problem is more straight-
forward; if we want to know about r given that we’ve seen k
events, we just construct a posterior using Bayes’s theorem:

f(r|k, I) =
p(k|r, I)f(r|I)

p(k|I)
∝ p(k|r, I)f(r|I) (5.9)

The main subtlety is choosing the prior distribution f(r|I). An
obvious simple choice is a uniform prior

f(r|I0) =

{
1

rmax
0 < r < rmax

0 otherwise
(5.10)

where we will find our calculations simplify greatly if rmax is large
enough that k � rmaxT . There are some conceptual problems
with a uniform prior, though. For example, if we replaced the
rate parameter in question with a scale parameter β = 1

r
we

would find that the prior on β is no longer uniform, but instead
f(β|I0) ∝ β−2.

19



An alternative is to use the prior

f(r|I1) =

{
1

ln(rmax/rmin)
1
r

rmin < r < rmax

0 otherwise
(5.11)

This is often referred to as a Jeffreys prior5 and you can show
that f(β|I1) ∝ β−1. We can also call this “uniform in log rate”
because if you do a change of variables to λ = ln r you’ll find
f(λ|I1) is uniform over the allowed range.

Physically, the 1
r

prior is appropriate when the rate is uncer-
tain over many orders of magnitude, so e.g., it’s as likely to be
between 10−3 Hz and 10−2 Hz as between 10−5 Hz and 10−4 Hz.
More likely, we have a sense of what the order of magnitude
of the rate should be, so a uniform prior, in addition to being
simpler, may actually reflect our knowledge better.

So let’s move ahead with the assumption that p(r|I) is con-
stant, so Bayes’s theorem tells is that

f(r|k, I) ∝ p(k|r, I) ∝ (rT )k e−rT (5.12)

We can get the proportionality constant from normalization, so

f(r|k, I) =
(rT )k e−rT∫ rmax

0
(r′T )k e−r′T dr′

(5.13)

If k � rmaxT , the denominator becomes∫ rmax

0

(r′T )k e−r
′T dr′ =

1

T

∫ rmaxT

0

uk e−u du ≈ 1

T

∫ ∞
0

uk e−u du

=
Γ(k + 1)

T
=
k!

T
(5.14)

5This is a slight misnomer, since the Jeffreys prior is defined by a mathe-
matical formula using the likelihood, and for some distributions the uniform
prior is the Jeffreys prior. To make things more confusing, the Jeffreys prior
for the rate parameter in an exponential distribution is proportional to r−1

as above, but for a Poisson distribution, it’s actually proportional to r−1/2.

so

f(r|k, I) ≈

{
T
k!

(rT )k e−rT 0 < r < rmax

0 otherwise
(5.15)

Note that this is a Gamma distribution with shape parameter
k + 1 and scale parameter T .

5.2 Case 2: Known Background

Now we have a case where the actual event rate is the unknown
quantity of interest, s (the signal or foreground rate) plus a
known background rate b, i.e., r = s + b. Now, if we knew
the exact number of background events, we could subtract that,
but as it is, all that’s known is the event rate, so there’s also
randomness in the background, so estimating s = r − b doesn’t
work out the same as estimating r.

5.2.1 Frequentist approach and issues

We can proceed mostly as before, for example we have a maxi-
mum likelihood estimate of

ŝ = r̂ − b =
k

T
− b (5.16)

and likewise our confidence interval could be defined using

P (R` − b ≤ s ≤ Ru − b) = α (5.17)

But if we happen to get a small number of events, the re-
sults can look weird. For instance, if k < bT , the maximum
likelihood estimate ŝ would be negative. Similar pathological
things can happen with the confidence intervals. This is one
of the problems addressed in Feldman and Cousins, “Unified
approach to the classical statistical analysis of small signals”,
Phys. Rev. D 57, 3873 (1998).
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5.2.2 Bayesian method

The construction of the posterior proceeds as before, but now
we have

f(s|k, I) =
([s+ b]T )k e−[s+b]T∫ smax

0
([s′ + b]T )k e−[s′+b]T ds′

=
([s+ b]T )k e−sT∫ smax

0
([s′ + b]T )k e−s′T ds′

(5.18)
where the constant e−bT cancels out. The denominator can be
evaluated as∫ smax

0

([s′+b]T )k e−s
′T dr′ =

1

T

k∑
j=0

k!

j!(k − j)!

∫ smaxT

0

uk−j (bT )j e−u du

≈ 1

T

k∑
j=0

k!

j!(k − j)!

∫ ∞
0

uk−j (bT )j e−u du︸ ︷︷ ︸
Γ(k−j+1)=(k−j)!

=
k!

T

k∑
j=0

(bT )j

j!

(5.19)

Thursday, May 1, 2014

5.3 Case 3: Unknown/estimated background

We move now to the general case where the foreground and
background rates are both unknown. In order to estimate the
foreground rate s and disentangle it from the background rate
b, we conduct two sets of observations:

• an OFF-source observation where the rate of events is b, of
duration Toff, in which koff events are observed

• an ON-source observation where the rate of events is s+ b,
of duration Ton, in which kon events are observed

The probability mass functions associated with the on- and off-
source distributions are

p(kon|s, b, I) =
([s+ b]Ton)kon

koff!
e−[s+b]Ton (5.20)

and

p(koff|b, I) =
(bToff)

koff

koff!
e−bToff (5.21)

Our goal is to make an inference about the rate r given the on-
and off-source observations; in the Bayesian approach this means
working out the posterior pdf f(r|kon, koff, I), where the infor-
mation I includes things like the duration of the observations,
but not a specific value for b.

5.3.1 Qualitative

Roughly speaking, the off-source observation will serve as a sort
of calibration and allow us to estimate b, albeit with some resid-
ual uncertainty. We can then estimate r from the on-source
observation, subject to the uncertainty in subtracting the back-
ground rate. So the result will look something like

b ∼ b̂± δb ∼ koff
Toff

±
√
koff
Toff

(5.22)

and

s ∼ ŝ± δs ∼ kon
Ton
− b̂±

√
kon

Ton
2 + (δb)2 (5.23)

but this back of the envelope calculation will fail if the numbers
of events are small.

5.3.2 Bayesian method

We want to work out the posterior pdf f(s|kon, koff, I) for the
foreground rate, given the on- and off-source observations, which
we’ve marginalized over the background rate b. We assume that
the priors on the foreground and background rates are uniform,
i.e.,

f(s|I0) =

{
1

smax
0 < s < smax

0 otherwise
(5.24)
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and

f(b|I0) =

{
1

bmax
0 < b < bmax

0 otherwise
(5.25)

and we’ll assume koff � bmaxToff, kon � smaxTon and kon �
bmaxTon to make the integrals simpler.

There are several equivalent ways to arrive at basically the
same expression for the posterior. The first two use the fact
that the on- and off-source measurements are independent to
work in terms of p(kon, koff|s, b, I) = p(kon|s, b, I) p(koff|b, I).

1. Use Bayes’s theorem to get the joint posterior

f(s, b|kon, koff, I) ∝ p(kon, koff|s, b, I) f(s, b|I)

= p(kon, koff|s, b, I) f(b|I) f(s|I)
(5.26)

and then marginalize over b to get

f(s|kon, koff, I) =

∫ ∞
0

f(s, b|kon, koff, I)

∝
∫ ∞

0

p(kon|s, b, I) p(koff|b, I) f(b|I) f(s|I) db (5.27)

2. Use Bayes’s theorem to write

f(s|kon, koff, I) ∝ p(kon, koff|s, I) f(s|I) (5.28)

and get the marginalized likelihood by writing

p(kon, koff|s, I) =

∫ ∞
0

p(kon, koff|s, b, I) f(b|I) db (5.29)

3. Consider I ′ = koff, I to be the state of information after
the off-source experiment, and describe the observation in
two steps: First, we get a pdf for b based on the off-source
experiment

f(b|I ′) = f(b|koff, I) ∝ p(koff|b, I) f(b|I) (5.30)

and then use this posterior as the prior on b in the on-source
experiment:

f(s|kon, I ′) ∝
∫ ∞

0

p(kon|s, b, I ′) f(b|I ′) db f(s|I ′)

∝
∫ ∞

0

p(kon|s, b, I) p(koff|b, I) f(b|I) db f(s|I) (5.31)

where we use the fact that neither the pmf for the on-source
experiment nor the pdf for the signal rate depend on the
outcome are directly affected by the results of the off-source
experiment, so p(kon|s, b, I ′) = p(kon|s, b, I) and f(s|I ′) =
f(s|I).

Of course, it’s not surprising that all three approaches give the
same expression, since they all just follow the rules of probabil-
ity. The last approach gives us a head start to constructing the
posterior on s, since we know the pdf of the background rate
after the off-source experiment will be a Gamma distribution

f(b|koff, I) ∝ (bToff)
koffe−bToff (5.32)

Note that this distribution has a mean of koff+1
Toff

and a width of
√
koff+1
Toff

, so in the limit of a long off-source observation with many
events, we get a more and more sharply-peaked distribution in
b, which makes the estimation of s tend towards the case of a
know background.

Moving on to the construction of the posterior on the fore-
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ground rate,

f(s|kon, koff, I) ∝
∫ ∞

0

([s+b]Ton)kone−[s+b]Ton(bToff)
koffe−bToff db

∝ e−sTon
∫ ∞

0

(s+ b)konbkoffe−b(Ton+Toff) db

∝ e−sTon
kon∑
j=0

kon!

(kon − j)!j!
(s[Ton + Toff])

j

∫ ∞
0

ukon+koff−je−u du

∝
kon∑
j=0

(kon + koff − j)!
(kon − j)!j!

(
1 +

Toff
Ton

)j
(sTon)j e−sTon (5.33)

Now, it’s pretty straightforward to do the integral over s and
work out that normalization constant to get

f(s|kon, koff, I) =
Ton

∑kon
j=0

(kon+koff−j)!
(kon−j)!j!

(
1 + Toff

Ton

)j
(sTon)j e−sTon∑kon

j′=0
(kon+koff−j′)!

(koff−j′)!

(
1 + Toff

Ton

)j′
(5.34)

although in practice the shape of the pdf is more interesting.

Tuesday, May 6, 2014

6 Choosing a Prior Distribution

In a typical parameter estimation problem, we use some data
D to make an inference about one or more parameters, usually
denoted by θ. In the Bayesian approach, this is done by using
Bayes’s theorem to construct the posterior distribution

f(θ|D, I) ∝ p(D|θ, I)f(θ|I) (6.1)

The prior distribution f(θ|I) is supposed to reflect the plausibil-
ity we assign to different values of θ, given any information I we

possessed going into the experiment. But sometimes the infor-
mation I might be difficult to turn into a prior pdf for θ. This
week we’ll consider a few tricks for constructing useful priors
given seemingly incomplete information.

6.1 The Jeffreys prior

6.1.1 Motivations

The simplest prior one might think of would be something that’s
uniform over the allowed range of θ values. This seems pretty
clear-cut, but the fact that f(θ|I) is a probability density in θ
causes an issue if we change variables. If, instead of θ, we use a
parameter τ which is some function of θ, the pdf for τ is

f(τ) =
dP

dτ
=

∣∣∣∣dθdτ
∣∣∣∣ dPdθ =

∣∣∣∣dθdτ
∣∣∣∣ f(θ) (6.2)

so if f(θ) is a constant, f(τ) will in general not be.
As a concrete example, suppose we’re considering a Poisson

process with an unknown rate λ. We could start with a uniform
prior on λ, as we did last week, but if we replace the rate pa-
rameter λ by a scale parameter β = 1

λ
(e.g., by re-writing an

exponential distribution as a Gamma distribution with α = 1),
we’d find

f(β) =

∣∣∣∣dλdβ
∣∣∣∣ f(λ) ∝ 1

β2
(6.3)

On the other hand, if f(λ) ∝ 1
λ

then

f(β) ∝ β

β2
=

1

β
(6.4)

Similarly, if we put a prior f(σ) ∝ 1
σ

on the standard deviation
for a normal distribution, we will also find a prior f(v) ∝ 1

v
on

the variance v = σ2.
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Such a prior, proportional to 1
θ
, can be thought of as a uniform

prior on ln θ. It’s common to refer to this as a “Jeffreys prior”
for θ, but that’s a slight misnomer, as the general Jeffreys prior
has a slightly different definition.

6.1.2 Mathematical definition

The Jeffreys prior is a prescription for generating a pdf for a
parameter from a likelihood function, in a way which is invariant
under reparametrization. It is defined by

f(θ) ∝
√
I(θ) (6.5)

where I(θ) is the Fisher information, sort of a one-dimensional
equivalent of the Fisher information matrix. Given a log-
likelihood `(θ;x) = ln f(x|θ), we construct

− `,θθ(θ;x) = −∂
2`

∂θ2
(6.6)

and then take the expectation value

I(θ) = 〈−`,θθ(θ;X)〉 (6.7)

This prescription gives the same expression even if we change
variables from θ to τ(θ) in the likelihood, i.e.,

f(τ) ∝
√
I(τ) (6.8)

because the partial derivatives arising from the chain rule are
just what’s needed to take care of the transformation from f(θ)
to f(τ). It’s worth noting that this works because ` is the log-
likelihood, and the likelihood is also used in the expectation

value, so

I(θ) = −
∫ ∞
−∞

`,θθ(θ;x)f(x|θ) dx

= − ∂

∂θ

∫ ∞
−∞

∂ ln f(x|θ)
∂θ

f(x|θ) dx+

∫ ∞
−∞

∂ ln f(x|θ)
∂θ

∂f(x|θ)
∂θ

dx

(6.9)

The first term vanishes because∫ ∞
−∞

∂ ln f(x|θ)
∂θ

f(x|θ) dx =

∫ ∞
−∞

1

f(x|θ)
∂f(x|θ)
∂θ

f(x|θ) dx

=

∫ ∞
−∞

∂f(x|θ)
∂θ

dx =
∂

∂θ

∫ ∞
−∞

f(x|θ) dx =
∂

∂θ
1 = 0 (6.10)

and the second term shows us that

I(τ) =

(
∂τ

∂θ

)2

I(θ) (6.11)

which gives us just the Jacobian we need to transform f(θ) into
f(τ).

6.1.3 Examples

We can apply this to a few distributions; for an exponential
distribution,

f(x|λ) = λe−λx (6.12)

the log-likelihood is

`(λ;x) = lnλ− λx (6.13)

so

`′ =
1

λ
− x (6.14)
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and

− `′′ = 1

λ2
(6.15)

which means I(λ) = 1
λ2 and the Jeffreys prior is

f(λ) ∝
√
I(λ) =

1

λ
(6.16)

as expected.
For a Gamma distribution,

f(x|α, β) =
xα−1

Γ(α)
β−αe−x/β (6.17)

which means

` = (α− 1) lnx− ln Γ(α)− α ln β − x

β
(6.18)

and
`,β = −α

β
+

x

β2
(6.19)

and

− `,β = − α

β2
+

2x

β3
(6.20)

which makes the Fisher information for the scale parameter β

I(β) = − α

β2
+

2 〈X〉
β3

= − α

β2
+

2αβ

β3
=

α

β2
(6.21)

and the Jeffreys prior

f(β) ∝
√
I(β) ∝ 1

β
(6.22)

For a Gaussian, you can show the Jeffreys prior for σ is pro-
portional to 1

σ
, but for µ it is uniform.

There’s sort of an odd property to this prescription, though.
It requires that you know the likelihood function to construct
the prior, i.e., you have to know what experiment you plan to
do to construct f(θ|I). This is really not the sort of information
we’d imagine to be part of I. To see how this can lead to some
weird results, return to the question of a prior for a Poisson event
rate λ, but instead of using the exponential pdf to construct the
likelihood function, suppose we plan to count the number of
events in a time T , and use the Poisson pmf

p(k|λ, T ) =
1

k!
(λT )ke−λT (6.23)

so the log-likelihood is

`(λ; k) = k lnλ− λT − ln
T k

k!
(6.24)

which means

`,λ =
k

λ
− T (6.25)

and

− `,λλ =
k

λ2
(6.26)

which makes the Fisher information

I(λ) =
〈K〉
λ2

=
λT

λ2
∝ 1

λ
(6.27)

and the Jeffreys prior

f(λ) ∝ 1√
λ

(6.28)

As a curiosity, note that this is the geometric mean of the Jef-
freys prior f(λ) ∝ 1

λ
which we constructed above from the ex-

ponential distribution (which is usually what people mean when
they talk about the Jeffreys prior for a rate) and the uniform
prior we used for counting experiments last week.
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6.2 Conjugate prior families

Another case where the form of the likelihood function can in-
dicate a convenient choice of prior is that of a conjugate prior
family. As an example, consider a counting experiment where
as usual

p(k|λ, T, I) =
1

k!
(λT )ke−λT (6.29)

and suppose it happens that the prior pdf for λ is a Gamma(α, β)
distribution

f(λ|I) ∝ λα−1e−λ/β (6.30)

Then Bayes’s theorem tells us the posterior will be

f(λ|k, T, I) ∝ f(λ|I)p(k|λ, T, I) ∝ λα−1e−λ/βλke−λT

= λα+k−1e−λ(
1
β

+T)
(6.31)

which is a Gamma(α′, β′) distribution, where

α′ = α + k and
1

β′
=

1

β
+ T (6.32)

I.e., if the prior for the rate in a Poisson experiment is a Gamma
distribution, the posterior will also be a Gamma distribution.
We say that the Gamma distribution is a conjugate prior family
for the Poisson distribution. (You saw something similar on the
second prelim: if the prior on the mean for a Gaussian experi-
ment is a Gaussian, the posterior will also be a Gaussian.)

Now, again, if the prior f(θ|I) is supposed to represent your
prior knowledge of the parameter θ, there’s no reason why it
has to be a member of the conjugate prior family. But these
families are actually pretty general, so there’s often a member
which is a good approximation to your knowledge. For example,
if you wanted to choose an approximately uniform prior f(λ|I) =
constant, you could take a Gamma distribution with α = 1 and

β very large. Or if you wanted a prior f(λ|I) ∝ 1
λ

(the uniform-
in-log-λ prior which is imprecisely called the Jeffreys prior), you
could take α close to zero and β very large. (We can’t take
α = 0 because the prior won’t be normalizable.) We see from
the form of (6.32) that if 1

β
� T it doesn’t matter what value

we actually used for β, and the results will look like what we
got last week with a uniform prior.

[“Empirical Bayes” and “the prior gets out of the way”.]

Thursday, May 8 2014

6.3 Maximum entropy

See Gregory, Chapter 8, and Sivia, Chapter 5
Finally, we consider a prescription for constructing a prior

probability distribution when we have incomplete information.
The so-called maximum entropy prescription says to choose the
probability distribution which maximizes the information en-
tropy subject to any constraints. The information entropy6 is
defined as

S = −
∑
I

pI ln pI (6.33)

where i indicates a state of the system, and pI the probability
associated with that state by the probability distribution,

6.3.1 Motivation for definition of entropy

Recall that in thermodynamics, the entropy of a state is

S = kB ln Ω (6.34)

where kB is Boltzmann’s constant, and Ω is the multiplicity, the
number of equivalent ways in which the state can be constructed.

6often known as the Shannon information entropy and defined by Claude
Shannon in Bell System Technical Journal 27, 379 (1948)
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To associate this with a probability distribution, start with the
case where there are K different discrete states, each of which
has probability pI according to the probability distribution. The
frequency interpretation of probability tells us that if we run the
random experiment N times, it will be found in the Ith state
NI ≈ NpI times. The number of different ways to choose which
N1 of the N experiments are in state 1, N2 are in state 2, etc is
the

Ω =
N !

N1!N2! · · ·Nk!
(6.35)

which makes the entropy, up to a constant,

S ∝ ln Ω = lnN !−
K∑
I=1

lnNI ! (6.36)

If NI is large, Stirling’s approximation says

lnNI ! ≈ NI lnNI −NI (6.37)

so

ln Ω ≈ N lnN −N −
K∑
I=1

NI lnNI +
K∑
I=1

NI (6.38)

Since
∑K

I=1NI = N , two of the terms cancel, and we’re left with

ln Ω ≈
K∑
I=1

NI lnN−
K∑
I=1

NI lnNI = −
K∑
I=1

NI ln
NI

N
= −N

K∑
I=1

pI ln pI

(6.39)
since we’re only looking to define S up to a constant, we can
divide by N to get

S ∝ ln Ω

N
= −

K∑
I=1

pI ln pI (6.40)

as advertised.
We’ll now show how several familiar distributions arise from

maximum entropy arguments in the presence of certain con-
straints.

6.3.2 Example: Uniform Distribution

The minimal constraint which must always be present is the
normalization of the probability distribution, that

∑
I pI = 1.

Suppose that is the only constraint we need to enforce. We can
use the method of Lagrange multipliers and minimize

Seff = −
K∑
I=1

pI ln pI + λ

(
K∑
I=1

pI − 1

)
(6.41)

with respect to {pI} and λ to minimize the entropy subject to
the constraint, and enforce the constraint itself. Taking ∂Seff

∂pJ
gives us the equation

0 = − ln pJ −
pJ
pJ

+ λ = − ln pJ − 1 + λ (6.42)

which says that
pJ = eλ−1 (6.43)

i.e., all of the probabilities are the same. Taking ∂
∂λ

tells us that

K∑
I=1

pI = 1 (6.44)

i.e., pI = 1
K

, i.e., a uniform distribution.

6.3.3 Example: Binomial Distribution

Sometimes it’s important to know the nature of the situation
described by the probability distribution, and not just think of
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the pdf or pmf as a function to be derived. For instance, con-
sider the case where the possible outcomes of the experiment
are the sequences of answers to n yes or no questions. Then
there are K = 2n possible outcomes, e.g., for n = 3 they are
{Y Y Y, Y Y N, Y NY, Y NN,NY Y,NY N,NNY,NNN}. The
calculation just followed says that, in the absence of any con-
straints, the maximum entropy distribution is for all of the pos-
sible outcomes to have the same probability, i.e.,

pI =
1

2n
MaxEnt with no constraints (6.45)

However, we might choose to label the results of the experiment
not by the sequence of yes and no answers, but by the total num-
ber k of yes results. Then each outcome I has a corresponding
kI . The total probability of getting k yes answers is

pk =
∑
I:kI=k

pI (6.46)

Let’s consider how to construct the entropy from {pk} in a way
which will agree with the construction based on {pI}. If we
restrict attention to probability distributions where all the {pI}
corresponding to a given k are equal, and refer to the number
of outcomes for a given k as mk, then

pI =
pkI
mkI

(6.47)

If we consider that we can write the sum over all outcomes as a
sum over k values, where each term in that sum contains a sum
over all outcomes for that k value, we have

S = −
∑
I

pI ln pI = −
∑
k

∑
I:kI=k

pkI
mkI

ln
pkI
mkI

= −
∑
k

mk
pk
mk

ln
pk
mk

= −
∑
k

pk ln
pk
mk

(6.48)

The mk, which is sort of a multiplicity of states corresponding
to the k value, is also known as the measure associated with the
discrete space of k values.

If, as before, we only require that the probability distribution
be normalized (

∑n
k=0 pk = 1), the entropy is maximized when

pk = mk
1

2n
=

(
n

k

)(
1

2

)k (
1

2

)n−k
(6.49)

which we see is the binomial distribution with probability 1
2
.

But what if we add the constraint that 〈k〉 =
∑n

k=0 k pk = µ,
and find the distribution with maximizes the entropy subject to
that constraint? Now there are two constraints, so we include
two Lagrange multipliers and find the maximum of

Seff =
n∑
k=0

pk ln
pk
mk

+ λ0

(
n∑
k=0

pk − 1

)
+ λ1

(
n∑
k=0

kpk − µ

)
(6.50)

Differentiating with respect to one of the {pk} gives

0 =
∂Seff

∂pk
= ln

pk
mk

+
pk
pk

+λ0 +kλ1 = ln
pk
mk

+1+λ0 +kλ1 (6.51)

which means

pk = mke
1+λ0+kλ1 =

(
n

k

)
e1+λ0

(
eλ1
)k

(6.52)

Setting the derivatives ∂Seff

∂λ0
and ∂Seff

∂λ1
to zero gives us the two

constraints, so we need to choose λ0 and λ1 to ensure
∑n

k=0 pk =
1 and

∑n
k=0 k pk = µ. Now, we already know a distribution of

the form (6.52) which satisfies the constraints, although we may
not recognize it in that form. Consider the binomial distribution
with n trials and a probability of µ/n. It has

pk =

(
n

k

)(µ
n

)k (
1− µ

n

)n−k
=

(
n

k

)(
1− µ

n

)n( µ/n

1− µ/n

)k
(6.53)
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so evidently, if we set

e1+λ0 =
(

1− µ

n

)n
(6.54)

and

eλ1 =
µ/n

1− µ/n
(6.55)

the distribution (6.52) will satisfy the constraints. Thus the
maximum entropy distribution for the case where the expecta-
tion value of the number of yes results in a sequence is known
is the binomial distribution.

Note that neither in this case nor in the unconstrained case did
we assume the yes/no questions were associated with repeated
identical trials with the same probability of success. I.e., we need
not be flipping the same coin; it could be different coins. On
the homework you’ll consider the scenario where we are doing
repeated trials with the same unknown probability, and see the
implications of choosing the maximum entropy distribution for
that probability.

6.3.4 Continuous distributions

Many probability distributions are continuous rather than dis-
crete. The natural thing is to replace the sum weighted by
the probability distribution pk with an integral weighted by the
probability density function f(x). If we also replace the measure
mk with something which acts like a density in x, then we can
define an expression

S = −
∫ ∞
−∞

f(x) ln
f(x)

m(x)
dx (6.56)

which is invariant under a change of variables from e.g., x to
y(x), since f(x) dx = f(y) dy, m(x) dx = m(y) dy, and

fX(x)

mX(x)
=

fY (y(x))

mY (y(x))
(6.57)

We call m(x) the Lebesgue measure, and it’s whatever is natu-
ral for the variable(s) in question. For instance, since dx dy =
r dr dφ, m(x, y) = 1 and m(r, φ) = r.

The other added complication is that varying S with respect
to f(x) is a functional derivative, but it generally works out.

As an example, if we assume m(x) = 1, −∞ < x <∞, we can
show that the maximum entropy distribution with expectation
value µ and variance σ2 is a Gaussian. We do this by varying

Seff =

∫ ∞
−∞

f(x) ln f(x) dx+ λ0

(∫ ∞
−∞

f(x) dx− 1

)
+ λ1

(∫ ∞
−∞

xf(x) dx− µ
)

+ λ2

(∫ ∞
−∞

(x− µ)2f(x) dx− σ2

)
(6.58)

with respect to f(x), λ0, λ1, and λ2. Exercise: try this!
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