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0 Motivation

0.1 The Central Limit Theorem

Our last topic of the semester will be the idea of convergence of
a sequence of random variables, with the main motivation being
to prove the Central Limit Theorem, which says that if you
add many independent, identically distributed random variables,
which are not necessarily normal random variables, their sum
will be approximately normally distributed. (The same will be
true for their average.) We have to be a bit careful here, though.
We know that if we have n iid random variables {Xi} with mean
µ = E(Xi) and variance σ2 = Var(Xi), their sum will have
mean E(

∑n
i=1Xi) = nµ and variance Var(

∑n
i=1Xi) = nσ2, so

we can’t quite talking about convergence to anything as n→∞.
However, if we use the sample mean X = 1

n

∑n
i=1Xi to construct

X − µ
σ/
√
n

(0.1)
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that is a combination whose mean is 0 and whose variance is
1 for all n; the central limit theorem says that this sequence
converges to a N(0, 1), i.e., standard normal random variable.
When we construct a large-sample confidence interval using the
percentiles (e.g., zα) of the standard normal distribution, we are
invoking an approximate form of the central limit theorem.

Before we can prove the central limit theorem, though, we
need to define what it means to say a sequence {Xn} of random
variables converges as n→∞. There are actually two different
sorts of convergence we can talk about, convergence in proba-
bility and convergence in distribution. The distinction between
them is easiest to understand if we take a step back and consider
what it means for two random variables to be equal in the first
place.

0.2 Equality of Random Variables

When we talk about two random variables X and Y , and write
X = Y , what we’re saying is that, for every outcome of the
experiment, the realizations of X and Y are equal. This implies
that1

P (X = Y ) = 1 if X = Y (0.2)

This kind of equality is the analogue of convergence in proba-

bility. Convergence in probability is written Xn
P→ X, and we

might define “equality in probability” and write something like

X
P
= Y by analogy but in practice we just call it equality and

write it X = Y .
We can also say that two random variables are equal in dis-

tribution if they have the same probability distribution. For

1Note that this is actually a necessary but not sufficient condition; it’s
possible for X and Y to disagree for a set of outcomes whose probability
is zero, e.g., if X is a χ2(2) random variable, and Y is defined to be X if
X 6= 0, and −1 if X = 0.

example, any two N(0, 1) random variables are equal in distri-
bution, as are any two random variables from a random sample.
Formally, we define

FX(x) = P (X ≤ x) = P (Y ≤ x) = FY (x) means X
D
= Y

(0.3)
The analogy of equality in distribution is convergence in distri-

bution, which we write Xn
D→ X. This is the sort of convergence

we will use when stating the central limit theorem.

Note that it’s easy to come up with examples where X
D
= Y

but X 6= Y . For instance, if X is N(0, σ2) so that

fX(x) =
1

σ
√

2π
e−

x2

2σ2 (0.4)

and we define Y = −X. Obviously, Y 6= X, but if we work out
the pdf for Y , we find

fY (y) =

∣∣∣∣d(−y)

dy

∣∣∣∣ fX(−y) =
1

σ
√

2π
e−

(−y)2

2σ2 =
1

σ
√

2π
e−

y2

2σ2 (0.5)

so Y is also N(0, σ2), and X
D
= Y .

1 Convergence in Probability

Recalling that equality (X = Y ) implies P (X = Y ) = 1, we
define convergence in probability as follows:

Xn
P→ X iff lim

n→∞
P (|Xn −X|< ε) = 1 for all ε > 0

(1.1)
or equivalently

Xn
P→ X iff lim

n→∞
P (|Xn −X| ≥ ε) = 0 for all ε > 0

(1.2)
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To give an example of convergence in probability, and also a
way to prove when a sequence converges, we consider a random
sample of size n drawn from some distribution with E(Xi) = µ
and Var(Xi) = σ2, We define the sample mean in the usual way

Xn =
1

n

n∑
i=1

Xi (1.3)

where the subscript n is to emphasize that this is the mean of a
sample of a particular size. We know that

E(Xn) = µ and Var(Xn) = σ2/n (1.4)

We will now show that the sequence of sample means actually

converges to the distribution mean µ, i.e., Xn
P→ µ, as follows.

To consider P (
∣∣Xn − µ

∣∣≥ ε), we can use Chebyshev’s inequality
with k chosen so that kσ/

√
n = ε, i.e., k = ε

√
n/σ, so that

P (
∣∣Xn − µ

∣∣≥ ε) ≤ σ2

nε2
(1.5)

if we take the limit as n→∞, we see that indeed

lim
n→∞

P (
∣∣Xn − µ

∣∣≥ ε) = 0 (1.6)

This is known as the weak law of large numbers. It’s “weak”
because we had to assume σ2 < ∞ and therefore it wouldn’t
work for a sample drawn from e.g., a t distribution with 2 de-
grees of freedom, which has an infinite second moment. There’s
actually a strong law of large numbers that shows this works
even when the variance doesn’t exist, but it’s beyond the scope
of this course.

Note that most of the useful examples of convergence in prob-
ability involve a sequence of random variables converging to a
degenerate random variable, i.e., one which only takes on one

value, and look something like Xn
P→ a. We can also see that

this Chebyshev method should work to show that E(Xn) con-
verges to its mean (or the limit of its mean) if Var(Xn) goes to
zero as n goes to infinity.

Hogg proves a sequence of theorems about convergence in
probability (the weak law of large numbers is actually Theorem
5.1.1), which we’ll just state here:

1. Theorem 5.1.2: If Xn
P→ X and Yn

P→ Y then Xn + Yn
P→

X + Y .

2. Theorem 5.1.3: If Xn
P→ X then aXn

P→ aX for any con-
stant a.

3. Theorem 5.1.5: If Xn
P→ X and Yn

P→ Y then XnYn
P→ XY .

4. Theorem 5.1.4: If Xn
P→ a and g(x) is a function which is

continuous at x = a, then g(Xn)
P→ g(a). So for example,

you can show that the sample variance S2
n = 1

n−1
∑n

i=1(Xi−
Xn)2 converges to σ2, which implies that Sn =

√
S2
n

P→ σ.

One other definition is the idea of consistency. Recall that we
said a statistic T is an unbiased estimator of a parameter θ if
E(T ) = θ. We say that

Tn is a consistent estimator of θ iff Tn
P→ θ (1.7)

It’s easy to come up with examples where a sequence of estima-
tors is unbiased but not consistent, or vice versa.

• The statistic Tn = Xn is obviously an unbiased estimator
of the mean µ, but doesn’t converge to anything, so it’s not
a consistent estimator.

• The maximum likelihood estimator

σ̂2
n =

1

n

n∑
i=1

(Xi −Xn)2 =
n− 1

n
S2 (1.8)
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of the variance is a biased estimator, since E(σ̂2
n) =

n−1
n
E(S2) = n−1

n
σ2, but it is still consistent because σ̂2

n
P→

σ2. (The bias goes to zero in the limit n→∞.)

Tuesday 3 December 2013
– Read Section 5.2 of Hogg

2 Convergence in Distribution

Recall that, in analogy with the two kinds of equality for random
variables, namely X = Y which implies P (X = Y ) = 1, and

X
D
= Y which means P (X ≤ x) = P (Y ≤ x), we define two

kinds of convergence for a sequence of random variables {Xn}
as n→∞. Last time we considered convergence in probability,

Xn
P→ X, where limn→∞ P (|Xn−X|<ε) = 1 for all ε > 0. Now

we turn to convergence in distribution, which is defined as

Xn
D→ X iff lim

n→∞
FXn(x) = FX(x) wherever FX cts

(2.1)
To see why we only consider points where the limiting cdf is
continuous, consider the sequence Xn = a + 1

n
. We know that

Xn converges in probability to the degenerate random variable
X = a, and it seems like it should converge in distribution as
well. The cdf for each random variable in the sequence is

P (Xn ≤ x) =

{
0 x < a+ 1

n

1 a+ 1
n
≤ x

(2.2)

while the cdf for the expected limiting distribution is

P (X ≤ x) =

{
0 x < a

1 a ≤ x
(2.3)

We see that if x < a, we do indeed have P (Xn ≤ x) = 0 for all
n. If x > a, we likewise have, for all n > 1

x−a , P (Xn ≤ x) = 1.
However, if x = a, we have P (Xn ≤ x) = 0 for all n, so the
sequence of cdfs converges to

lim
n→∞

P (Xn ≤ x) =

{
0 x ≤ a

1 a < x
(2.4)

which is not quite the cdf of X. But they only disagree where
P (X ≤ x) is discontinuous, so the definition of convergence in

distribution is satisfied, and Xn
D→ X = a.

Note that since convergence in distribution refers only to the
cdf of the limiting random variable, we can unambiguously refer
to a sequence as converging to a distribution rather than spec-
ifying a random variable that obeys that distribution. So e.g.,

if Xn
D→ X where X is a χ2(5) random variable, we can just

as well say Xn
D→ χ2(5). We refer to this distribution as the

limiting distribution of the sequence.
Hogg states or proves a number of theorems about conver-

gence in distribution, which we’ll state here without proof:

1. Theorem 5.2.1: If Xn
P→ X, then Xn

D→ X. This is to be ex-
pected, since convergence in probability is “stronger” than
convergence in distribution. (Again, thinking about the
analogous point for equality, two random variables which
are equal clearly obey the same distribution.)

2. Theorem 5.2.2: If Xn
D→ a, then Xn

P→ a, i.e.,

lim
n→∞

P (Xn ≤ x) =

{
0 x < a

1 a < x
(2.5)

Note that we don’t need to say what the limit of the cdf is
for x = a, since the definition of convergence in probabil-
ity excludes points where the limiting cdf is discontinuous.
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We wouldn’t expect the converse of Theorem 5.2.1 to hold;
convergence in distribution doesn’t imply convergence in
probability, since different random variables can obey the
same distribution. On the other hand, in the special case
of convergence to a degenerate random variable which is
always equal to the same number, it does work. This also
makes sense, since two random variables with the same de-
generate distribution are in fact equal (since they each equal
the same number with 100% probability).

3. Theorem 5.2.3: If Xn
D→ X and Yn

P→ 0, then Xn+Yn
D→ X.

4. Theorem 5.2.4: If Xn
D→ X and g(x) is a continuous func-

tion on the support of X, then g(Xn)
D→ g(X).

5. Theorem 5.2.5: If Xn
D→ X, An

P→ a and Bn
P→ b, then

AnXn+Bn
D→ aX+b. This is known as Slutsky’s Theorem.

Convergence in distribution is defined using the cumulative
distribution function, which is useful because it works with both
continuous and discrete distributions. (This is especially help-
ful if we want to show that a sequence of discrete random vari-
ables converges in distribution to a continuous random variable.)
We’ll see that the moment generating function can also be used
to show convergence. However, there are cases where the mgf
doesn’t exist, and the cdf is not a convenient function to work
with. In these cases, we need to consider the pdf of pmf as
appropriate.

For example, let {Tn} be a sequence where Tn obeys a t-
distribution with n degrees of freedom. We know that the pdf
is

fT (t;n) =
Γ([n+ 1]/2)√
nπΓ(n/2)

(
1 +

t2

n

)−[n+1]/2

(2.6)

We can’t just consider the limit of the pdf, though; we’re sup-

posed to work with the cdf, which is

P (Tn ≤ t) =

∫ t

−∞
fT (y;n) dy (2.7)

Now, the limit is

lim
n→∞

P (Tn ≤ t) = lim
n→∞

∫ t

−∞
fT (y;n) dy =

∫ t

−∞
lim
n→∞

fT (y;n) dy

(2.8)
It is a non-trivial thing to interchange the limit and the integral
like that, since the integral is itself a limit as the lower limit
goes to −∞. It turns out that in this case the form of fT (y;n)
is nice enough that it works; see Hogg for more details. Now we
can talk about

lim
n→∞

fT (y;n) =

(
lim
n→∞

Γ([n+ 1]/2)√
nπΓ(n/2)

)(
lim
n→∞

[
1 +

y2

n

]−n+1
2

)
(2.9)

Now, the first factor is just a number, so in principle we could
work it out after the fact by requiring the limiting pdf to be

normalized. You will show on the homework that it is
√

1
2π

,

using Stirling’s formula which says

n! = Γ(n+ 1) ≈ nne−n
√

2πn (2.10)

See for example section 4.2 of http://ccrg.rit.edu/~whelan/
courses/2004_1sp_A410/notes02.pdf for a motivation of this.

The non-constant part is

lim
n→∞

(
1 +

y2

n

)−n+1
2

= lim
n→∞

(
1 +

y2

n

)−n/2
=
(
ey

2
)−1/2

= e−y
2/2

(2.11)
so

lim
n→∞

fT (y;n) =
1√
2π

e−y
2/2 (2.12)
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and

lim
n→∞

P (Tn ≤ t) =

∫ t

−∞

1√
2π

e−y
2/2 dy = Φ(t) (2.13)

which is the cdf of a standard normal distribution, so

Tn
D→ N(0, 1) (2.14)

I.e, the sequence of t-distributed random variables has a limiting
distribution which is standard normal.

2.1 Moment Generating Function Technique

We know that the moment generating function

M(t) = E(etX) (2.15)

if it exists in a neighborhood −h < t < h is useful not only for
computing the moments of a distribution but also for identifying
random variables that follow a certain distribution. The same
is true for limits of sequences; if M(t;n) = E(etXn) exists and

limn→∞M(t;n) = M(t) = E(etX), then Xn
D→ X. We’ll use

this to prove the central limit theorem, but first let’s use it on
a limit which is not a case of the CLT.

For example, suppose that Yn is b(n, µ/n) for all integer n > µ
where µ is some positive constant, i.e., consider a sequence of
binomial random variables with the same mean. The mgf for
b(n, p) is M(t) = (pet + (1 − p))n for all real t. If we take
p = µ/n we get

M(t;n) =
(µ
n
et + 1− µ

n

)n
=
(

1 +
µ

n
(et − 1)

)n
(2.16)

so the limit is

lim
n→∞

M(t;n) = exp(µ(et − 1)) = M(t) (2.17)

which we see is the mgf of a Poisson distribution with mean µ,
so a sequence of b(n, µ/n) random variables has a Poisson with
mean µ as its limiting distribution.

Thursday 5 December 2013
– Read Section 5.3 of Hogg

3 Central Limit Theorem

The central limit theorem states that if {Xi} is a sample of size
n drawn from a distribution with mean E(Xi) = µ and variance
Var(Xi) = σ2, then

Yn =

∑n
i=1Xi − nµ
σ
√
n

=
X − µ
σ/
√
n

D→ N(0, 1) (3.1)

We can prove this using the moment generating function. I’ll
show this using the cumulant generating function

ψ(t) = lnE(exp[tXi]) (3.2)

for the distribution from which the sample is drawn. We know
that ψ(0) = 0, ψ′(0) = E(Xi) = µ, and ψ′′(0) = Var(Xi) = σ2,
so we can write the truncated McLaurin series for ψ(t) as

ψ(t) = ψ(0)+ tψ′(0)+
t2

2
ψ′′(0)+o(t2) = ψ(0)+µt+

σ2t2

2
+o(t2)

(3.3)

where o(t2) is some expression such that limt→0
o(t2)
t2
→ 0; we also

sometimes write this as O(t3). Hogg writes that more precisely
as2

ψ(t) = ψ(0) + tψ′(0) +
t2

2
ψ′′(ξ(t)) = µt+

σ2t2

2
+
ψ′′(ξ(t))− σ2

2
t2

(3.4)

2Actually, Hogg just calls this ξ, which leads to confusion when the
argument of the mgf changes from t to t

σ
√
n

.
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where ξ(t) is some number between 0 and t. Since

lim
t→0

ψ′′(ξ(t)) = ψ′′(0) = σ2 (3.5)

the last term is indeed o(t2). Now we consider the cumulant
generating function

Ψ(t;n) = lnE(exp[tYn]) = lnE

(
exp

[
t

σ
√
n

{
n∑
i=1

(Xi − µ)

}])

= ln
n∏
i=1

E

(
exp

[
t

σ
√
n
{Xi − µ}

])
=

n∑
i=1

lnE

(
exp

[
t

σ
√
n
{Xi − µ}

])
= n

[
ψ

(
t

σ
√
n

)
− t

σ
√
n
µ

]
(3.6)

If we use the Taylor expansion (3.4) we have

Ψ(t;n) = n

[
1

2

(
t

σ
√
n

)2

ψ′′
(
ξ

(
t

σ
√
n

))]
=

t2

2σ2
ψ′′
(
ξ

(
t

σ
√
n

))
(3.7)

When we take the limit n → ∞, the argument of ψ′′() goes to
zero, and thus

lim
n→∞

Ψ(t;n) =
t2

2σ2
ψ′′(0) =

t2

2
(3.8)

which is the natural log of the mgf of a N(0, 1) random variable,

so by the mgf method we’ve shown Yn
D→ N(0, 1).

3.1 Applications

The Central Limit Theorem is a statement about the limit of a
sequence of distributions, i.e.,

lim
n→∞

P (Yn ≤ z) = P (Z ≤ z) = Φ(z) (3.9)

where Yn = X−µ
σ/
√
n

and Z is a standard normal (N(0, 1)) random

variable. For practical applications, of course, we don’t live in
the limit n → ∞, and it’s usually used to say that when n is
“large”,

P (Yn ≤ z) ≈ Φ(z) for large n (3.10)

or equivalently

P (Xn ≤ x) ≈ Φ

(
x− µ
σ/
√
n

)
for large n (3.11)

or

P

(
n∑
i=1

Xi ≤ y

)
≈ Φ

(
y − nµ
σ
√
n

)
for large n (3.12)

One important caveat is that we haven’t said anything about
how good the approximation is for large finite n, or even what
“large” means. Such questions are beyond the scope of this
course, but one piece of conventional wisdom to keep in mind
is that convergence is slowest out on the tails, i.e., when the
argument of the standard normal cdf Φ(z) is greater than 3 or
so, or less than −3 or so.

We can use the central limit theorem to show that many dis-
tributions behave approximately like the normal distribution for
certain ranges of their parameters. For instance, the following
random variables can be written as sums of random samples:

• A b(n, p) (binomial) random variable is the sum of n iid
b(1, p) (Bernoulli) random variables
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• A Poisson random variable with mean nµ is the sum of n
iid Poisson random variables each with a mean µ

• A Γ(nα, β) (Gamma) random variable is the sum of n iid
Γ(α, β) random variables

• A χ2(n) (chi square) random variable is the sum of n iid
χ2(1) random variables.

so in each case, for large enough n, we can approximate the
random variable in question as normally-distributed with the
same mean and variance as the original random variable.

We should be careful not to get too carried away, though,
since such an argument could be misinterpreted to tell us that
any Poisson random variable is apparently normally distributed.
For example, we can write a Poisson random variable with mean
1.5 as the sum of a million iid Poisson random variables with
mean 1.5× 10−6, which is certainly a large sample. The reason
the central limit theorem doesn’t let us approximate this sum
as normally-distributed is that, in order to get a large sample,
we had to make the Poisson parameter for each member of the
sample very small, making that random variable nearly degen-
erate (each of these random variables has a probability of about
0.9999985 of being zero). In effect, we’ve tried to take the limit
of the sum of n Poisson random variables each with mean µ/n,
as n → ∞. The central limit theorem doesn’t apply because
we’re not holding the distributions of the random variables in
the sample constant. The same thing happens if we take b(n, p)
with n large and p small; that is not approximately normal (we
showed last time it was approximately Poisson).

We can, however, approximate the binomial distribution with
the normal distribution as long as np and n(1 − p) are large
enough. The usual guideline is for each of them to be greater
than about 5. If these are large but not incredibly large, we
have to worry a bit about approximating a discrete distribution
(b(n, p)) with a continuous one (N(np, np[1−p])). For example,

suppose we flip a fair coin 100 times and let X be the number of
heads. We know that X is a b(100, 0.5) random variable, with
E(X) = 100(0.5) = 50 and Var(X) = 100(0.5)(1− 0.5) = 25, so
its distribution should be approximately the same as that of Y ,
a N(50, 25) random variable. But since X is discrete and can
only take on integer values, we know

P (X ≤ 40) = P (X < 41) (3.13)

while this is not true for the corresponding continuous random
variable:

P (Y ≤ 40) = Φ

(
40− 50

5

)
= Φ(−2)

6= P (Y < 41) = Φ

(
41− 50

5

)
= Φ(−1.8)

(3.14)

The convention, to get a good approximation, is to take the
value in the middle of the possible interval from 40 to 41, i.e.,

P (X ≤ 40) = P (X < 41) = P (X < 40.5)

≈ P (Y < 40.5) = Φ

(
40.5− 50

5

)
= Φ(−1.9)

(3.15)

This is known as the continuity correction.

Tuesday 10 December 2013
– Review for Final Exam

The exam is comprehensive, but with relatively more emphasis
on chapters four and five. Please come with questions and topics
you’d like to go over.
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