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Tuesday 8 October 2013
– Read Section 3.1 of Hogg

1 Binomial & Related Distributions

1.1 The Binomial Distribution

Recall our first example of a discrete random variable, the
number of heads on three flips of a fair coin. In that case,
we were able to count the number of outcomes in each event,
e.g., there were three ways to get two heads and a tail:
{HHT,HTH, THH}, and each of the eight possible outcomes
had the same probability, 1

8
= 0.125. If we consider a case where

the coin is weighted so that each flip has a 60% chance of being a
head and only a 40% chance of being a tail, then the probability
of each of the ways to get two heads and a tail is:

P (HHT ) = (0.60)(0.60)(0.40) = 0.144 (1.1a)

P (HTH) = (0.60)(0.40)(0.60) = 0.144 (1.1b)

P (THH) = (0.40)(0.60)(0.60) = 0.144 (1.1c)

In each case, the probability is (0.60)2(0.40)1 = 0.144, so if X
is the number of heads in three coin flips, P (X = 2) = 0.144 +
0.144 + 0.144 = 0.432. We can work out all of the probabilities
in this way:

#H outcomes # prob(each outcome) tot prob
0 {TTT} 1 (0.40)3 = 0.064 0.064
1 {TTH, THT,HTT} 3 (0.60)(0.40)2 = 0.096 0.288
2 {THH,HTH,HHT} 3 (0.60)2(0.40) = 0.144 0.432
3 {TTT} 1 (0.60)3 = 0.216 0.216

This is an example of a binomial random variable. We have
a set of n identical, independent “trials”, experiments which

could each turn out one of two ways. We call one of those
possible results “success” (e.g., heads) and the other “failure”
(e.g., tails). The probability of success on a given trial is some
number p ∈ [0, 1], so the non-negative integer n and real number
p are parameters of the distribution. The random variable X is
the number of successes in the n trials. Evidently, the possible
values for X are 0, 1, 2, . . . , n. The probability of x successes is

p(x) = P (X = x) = (# of outcomes)(prob of each outcome)
(1.2)

We can generalize the discussion above to see that the probabil-
ity for any sequence containing x successes, and therefore n− x
failures is px(1−p)n−x. In the simple example we just listed all of
the outcomes in a particular event, but that won’t be practical
in general. Instead we fall back on a result from combinatorics.
The number of ways of choosing x out of the n trials, which we
call “n choose x”, is(

n

x

)
=

(n)(n− 1)(n− 2) . . . (n− x+ 1)

(x)(x− 1)(x− 2) . . . (1)
=

n!

(n− x)!x!
(1.3)

As a reminder, consider the number of distinct poker hands,
consisting of five cards chosen from the 52-card deck. If we
consider first the cards dealt out in order on the table in front
of us, there are 52 possibilities for the first card, 51 for the
second, 50 for the third, 49 for the fourth and 48=52-5+1 for
the fifth. So the number of ways five cards could be dealt to us
in order is (52)(51)(50)(49)(48) = 52!

47!
. But that is overcounting

the number of distinct poker hands, since we can pick up the
five cards and rearrange them anyway we like. Since we have
5 choices for the first card, 4 for the second, 3 for the third,
2 for the fourth and 1 for the fifth, any five-card poker hand
can be rearranged (5)(4)(3)(2)(1) = 5! = 120 different ways.
So in the list of 52!

47!
ordered poker hands, each unordered hand
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is represented 5! = 120 times. Thus the number of unordered
poker hands is(

52

5

)
=

52!

47!5!
=

(52)(51)(50)(49)(48)

(5)(4)(3)(2)(1)
(1.4)

returning to the binomial distribution, this makes the pmf

p(x) =

(
n

x

)
px(1− p)n−x x = 0, 1, . . . , n (1.5)

1.1.1 Some advice on calculating
(
n
k

)
There is some art to calculating the binomial coëfficient(

n

k

)
=

n!

(n− k)!k!
(1.6)

For one thing, you basically never want to actually calculate the
factorials. For example, consider

(
100
2

)
. It’s easy to calculate if

we write (
100

2

)
=

(100)(99)

(2)(1)
= (50)(99) = 4950 (1.7)

On the other hand, if we write(
100

2

)
=

100!

98!2!
(1.8)

we find that 100! and 98! are enormous numbers which will over-
flow calculators, single precision programs, etc.

A few identities which make these calculations easier:(
n

n− k

)
=

n!

k!(n− k)!
=
n

k
(1.9a)(

n

0

)
=

(
n

n

)
=

n!

n!0!
= 1 (1.9b)(

n

1

)
=

(
n

n− 1

)
=

n!

(n− 1)!1!
= n (1.9c)

Note that this uses the definition that 0! = 1.
If k is small, you can write out the fraction, cancelling out

n − k factors to leave k factors in the numerator and k factors
(including 1) in the denominator. (If n− k is small, you cancel
out k factors to leave n − k.) If k is really small you can use
Pascal’s triangle

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

where element k of row n is
(
n
k

)
and is created (for n > 1) by

the recursion relation(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
(1.10)

I mention this mostly as a reminder that the binomial coëfficient
is what appears in the binomial expansion

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k (1.11)

This can be used to show the binomial pmf is properly normal-
ized:

n∑
x=0

p(x) =
n∑
x=0

(
n

x

)
px(1− p)n−x = (p+ [1− p])n = 1n = 1

(1.12)
As a curiosity, note that sometimes a general formula [such as

the recursion relation (1.10)] might tell us to calculate some sort
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of impossible binomial coëfficient, like
(

5
−1

)
or
(

4
6

)
. Logically, it

would seem reasonable to declare these to be zero, since there
are no ways e.g., to pick six different items from a list of four.
In fact, there’s a sense in which the definition with factorials
extends to this. For example,(

3

4

)
=

3!

4!(−1)!
(1.13)

Now, the factorial of a negative number is not really defined,
but if we try to extend the definition, it turns out to be, in some
sense, infinite. We will, in the near future, define something
known as the gamma function, usually defined by the integral

Γ(α) =

∫ ∞
0

tα−1e−t dt (1.14)

It’s easy to do the integral for α = 1 and show that Γ(1) = 1
Using either integration by parts or parametric differentiation,
we can show that Γ(α + 1) = αΓ(α), from which you can show
that for non-negative integer n, Γ(n + 1) = n!. If we try to use
the recursion relation to find Γ(0), which would be (−1)!, we’d
get

1 = Γ(1) = 0Γ(0) (1.15)

which is not possible if Γ(0) is finite. So it makes some sense to
replace 1

Γ(0)
with zero. Proceeding in this way you can show that

Γ(α) also blows up if α is any negative integer. (We can also use
the Gamma function to extend the definition of the factorial to
non-integer values, but that’s a matter for another time.)

Finally, there’s the question of how to calculate binomial prob-
abilities when x and n−x are really large. At this point, you’re
going to be using a computer anyway. There are a few tricks for
dealing with the large factorials, primarily by calculating ln p(x)
rather than p(x), but many statistical software packages do a lot

of the work for you. For instance, in R, you can calculate the
binomial pdf and/or cdf with commands like

n<-50

p<-0.25

x<-0:n

px<-dbinom(x,n,p)

Fx<-pbinom(x,n,p)

or with python

import numpy

from scipy.stats import binom

n=50

p=0.25

x=numpy.arange(n+1)

px=binom.pmf(x,n,p)

Fx=binom.cdf(x,n,p)

1.1.2 Properties of the Binomial Distribution

Returning to the binomial distribution, we can find its moment
generating function and use it to find the mean and variance
relatively quickly:

M(t) = E(etX) =
n∑
x=0

etxp(x) =

(
n

x

)
(pet)x(1−p)n−x = (pet+[1−p])n

(1.16)
It is often easier to work with the logarithm of the mgf, known
as the cumulant generating function, which you studied in Hogg
problem 2.4.8:

ψ(t) = lnM(t) = n ln(pet + [1− p]) (1.17)

We use the chain rule to take its derivative:

ψ′(t) =
npet

pet + [1− p]
(1.18)
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from which we get the mean

E(X) = ψ′(0) =
np

p+ [1− p]
= np (1.19)

and differentiating again gives

ψ′′(t) =
npet

pet + [1− p]
− np2e2t

(pet + [1− p])2
(1.20)

from which we get the variance.

Var(X) = ψ′′(0) = np− np2 = np(1− p) (1.21)

These should be familiar results (the mean is sort of obvious if
you think about it), but deriving them directly requires tricky
manipulations of the sums. With the mgf it’s child’s play.

1.2 The Multinomial Distribution

The binomial distribution can be thought of as a special case of
the multinomial distribution, which consists of a set of n identi-
cal and independent experiments, each of which has k possible
outcomes, with probabilities p1, p2, . . . , pk, with p1 + p2 + · · · +
pk = 1. (For the binomial case, k = 1, p1 becomes p, and p2 is
1− p.) Define random variables X1, X2, . . .Xk−1 which are the
number of experiments out of the n total with each outcome.
(We could also define Xk, but it is completely determined by
the others as Xk = n−X1−X2− . . .−Xk−1. The probability of
any particular sequence of outcomes of which x1 are of the first
sort, x2 of the same sort, etc, with x1 + x2 + · · ·+ xk = n is

px11 p
x2
2 · · · p

xk
k (1.22)

How many different such outcomes are there? Well, there are(
n
x1

)
= n!

x1!(n−x1)!
ways to pick the x1 experiments with the first

outcome. Once we’ve done that, there are n − x1 possibilities
from which to choose the x2 outcomes of the second sort, so
there are

(
n−x1
x2

)
= (n−x1)!

x2!(n−x1−x2)!
ways to do that, or a total of

(
n

x1

)(
n− x1

x2

)
=

n!

x1!(n− x1)!

(n− x1)!

x2!(n− x1 − x2)!

=
n!

x1!x2!(n− x1 − x2)!
(1.23)

ways to pick the experiments that end up with the first two sorts
of outcomes. Continuing in this way, we find the total number
of outcomes of this sort to be(

n

x1

)(
n− x1

x2

)(
n− x1 − x2

x3

)
· · ·
(
n− x1 − x2 − · · · − xk−1

xk

)
=

n!

x1!x2! · · ·xk!
(1.24)

So the joint pdf for these multinomial random variables is

p(x1, x2, . . . , xk−1) =
n!

x1!x2! · · ·xk!
px11 p

x2
2 · · · p

xk
k ,

x1 = 0, 1, . . . n; x2 = 0, 1, . . . , n− x1;

· · · ; xk = n− x1 − x2 − · · · − xk−1 (1.25)

Thursday 10 October 2013
– Read Section 3.2 of Hogg

1.3 More on the Binomial Distribution

Recall that if we add two independent random variables X1 and
X2 with mgfs M1(t) = E(etX1) and M2(t) = E(etX2), we can
work out the distribution of their sum Y = X1 +X2 by finding
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its mgf:

MY (t) = E(etY ) = E(et(X1+X2)) = E(etX1etX1)

= E(etX1)E(etX1) = M1(t)M2(t)
(1.26)

where we have used the fact that the expectation value of a prod-
uct of functions of independent random variables is the product
of their expectation values.

Now suppose we add independent binomial random variables:
X1 has n1 trials with a probability of p (the notation introduced
by Hogg calls this a b(n1, p)) and X2 has n2 trials, also with a
probability of p (which Hogg would call b(n2, p)). Their mgfs
are thus

M1(t1) = (pet + [1− p])n1 and M2(t2) = (pet + [1− p])n2

(1.27)
If we call their sum Y = X1 +X2, its mgf is

MY (t) = M1(t)M2(t) = (pet + [1− p])n1+n2 (1.28)

but this is just the mgf of a b(n1 + n2, p) distribution. This
important result also makes sense from the definition of the bi-
nomial distribution. Adding the number of successes in n1 trials
and in n2 more trials is the same as counting the number of suc-
cesses in n1 + n2 trials, as long as all the trials are independent,
and the probability for success on each one is p.

1.4 The Negative Binomial Distribution

The binomial distribution is appropriate for describing a situa-
tion where the number of trials is set in advance. Sometimes,
however, one decides to do as many trials as are needed to ob-
tain a certain number of successes. The random variable in that
situation would then be the number of trials that were required,
or equivalently, the number of failures that occurred. This is

know as a negative binomial random variable: given indepen-
dent trials, each with probability p of success, X is the number
of failures before the rth success. This probability is a little
more involved to estimate. To get X = x, we have to have r− 1
successes (and x failures) in the first x + r − 1 trials, and then
a success in the last trial, so the pmf is

p(x) =

(
x+ r − 1

r − 1

)
pr−1(1− p)xp =

(
x+ r − 1

r − 1

)
pr(1− p)x

(1.29)
We can have any (non-negative integer) number of failures, so
the pmf is defined for x = 0, 1, 2, . . ..

You will explore this distribution on the homework, and show
that the mgf is

M(t) = pr[1− (1− p)et]−r (1.30)

The factor in brackets is a binomial raised to a negative power,
which is where the name “negative binomial distribution” comes
from.

Note that in the special case r = 1, this is the number of fail-
ures before the first success, which is the geometric distribution
which you’ve considered on a prior homework.

As an aside, the distinction between an experiment where
you’ve decided in advance to do n trials, and one where you’ve
decided to stop after r successes, leads to a complication in
classical statistical inference called the stopping problem. The
problem arises because in classical, or frequentist, statistical in-
ference, you have to analyze the results of your experiment in
terms of what would happen if you repeated the same experi-
ment many times, and think about how likely results like you
saw would be given various statistical models and parameter
values. To answer such questions, you have to know what ex-
periment you were planning to do, not just what observations
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you actually made. One of the advantages of Bayesian statisti-
cal inference, which asks the more direct question of how likely
various models and parameter values are, given what you actu-
ally observed, is that you typically don’t have to say what you’d
do if you repeated the experiment.

1.5 The Hypergeometric Distribution

Both the binomial and negative binomial distribution result
from repeated independent trials with the same probability p
of success on each trial. This is a situation that’s sometimes
called sampling with replacement, since it’s what would hap-
pen if you put, e.g., 35 red balls and 65 white balls in a bowl,
drew one at random, noted its color, put it back, mixed up the
balls, and repeated. Each time there would be a probability of
35/(35 +65) = 0.35 of drawing a red ball. If, on the other hand,
you picked the ball out and didn’t put it back, the probability of
drawing a red ball on the next try would change. If the first ball
was red, you’d have only a 34/99 ≈ 0.3434 chance of the next
one being red (since there are now 34 red balls and still 65 white
balls in the bowl), while if the first one was white, the probabil-
ity for the second one to be red would go up to 35/99 ≈ 0.3535.
This is called sampling without replacement. In practice, making
some sort of huge tree diagram for all of the conditional proba-
bilities, draw after draw, is impractical, so instead, if you want
to know the probability to draw, say, three red balls out of ten,
you count up the number of ways to do it. If you pick 10 balls
out of a bowl containing 100, there are

(
100
10

)
= 100!

90!10!
ways to do

that. To count the number of those ways that have 3 red balls
and 7 white balls, you need to count the number of ways to pick
3 of the 35 red balls, which is

(
35
3

)
= 35!

32!3!
times the number of

ways to pick 7 of the 65 white balls, which is
(

65
7

)
= 65!

58!7!
, so

the probability of drawing exactly 3 red balls out of 10 when

sampling without replacement from a bowl with 35 red balls out
of 100 is (

35
3

)(
65
7

)(
100
10

) (1.31)

In general, if there are N balls, of which D are red, and we
draw n of them without replacement, the number of red balls in
our sample will be a hypergeometric random variable X whose
pmf is

p(x) =

(
D
x

)(
N−D
n−x

)(
N
n

) (1.32)

As you might guess from the name, the mgf for a hypergeometric
distribution is a hypergeometric function, which doesn’t simplify
things much. When D and N −D are both large compared to
n, the hypergeometric distribution reduces approximately to the
binomial distribution. (Jaynes1 uses the hypergeometric distri-
bution in many of his examples, to avoid making the simplifying
assumption of sampling with replacement.)

2 The Poisson Distribution

Consider the numerous statistical statements2 you get like:

1. On average 118.3 people per day are killed in traffic acci-
dents in the US

2. On average there are 367.2 gamma-ray bursts detected per
year by orbiting satellites

3. During a rainstorm, an average of 929.4 raindrops falls on
a square foot of ground each minute

1E. T. Jaynes, Probability Theory: the Logic of Science (Cambridge,
2003)

2I fabricated the last few significant figures in each of these numbers to
produce a concrete example.
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In each of these cases, the number of events, X, occurring in
one representative interval is a discrete random variable with a
probability mass function. The average number of events occur-
ring is a parameter of this distribution, which Hogg writes as
m. From the information given above, we only know the mean
value of the distribution, E(X) = m. The extra piece of infor-
mation that defines a Poisson random variable is that each of
the discrete events to be counted is independent of the others.

2.1 Aside: Simulating a Poisson Process

To underline what this independence of events means, and to
further to illustrate the kind of situation described by a Poisson
distribution, consider the following thought experiment. Sup-
pose there’s a field divided into a million square-foot patches,
and I’m told that there is an average of 4.5 beetles per square
foot patch, with the location of each beetle independent of the
others. If I wanted to simulate that situation, I could distribute
4,500,000 beetles randomly among the one million patches. I’d
do this by placing the beetles one at a time, randomly choosing
a patch (among the million available) for each beetle, without
regard to where any of the other beetles were placed. The num-
ber of beetles in any one patch would then be pretty close to
a Poisson random variable. (It wouldn’t be exactly a Poisson
rv, because the requirement of exactly 4,500,000 beetles total
would break the independence of the different patches, but in
the limit of infinitely many patches, and a corresponding total
number of beetles, it would become an arbitrarily good approx-
imation.) In fact, the numbers of beetles in each of the one
million patches would make a good statistical ensemble for ap-
proximately describing the probability distribution for the Pois-
son random variable.

2.2 Poisson Process and Rate

These scenarios described by a Poisson random variable are often
associated with some sort of a rate: 118.3 deaths per day, 367.2
GRBs per year, 929.4 raindrops per square foot per minute, 4.5
beetles per square foot. We talk about a Poisson process with an
associated rate α (e.g., a number of events per unit time), and
if we count all the events in a certain interval of size T (e.g., a
specified duration of time), it is a Poisson random variable with
parameter m = αT . So for example, if the clicks on a Geiger
counter are described by a Poisson process with a rate of 45 clicks
per minute, the number of clicks in an arbitrarily chosen one-
minute interval of time will be a Poisson random variable with
m = 45. If the interval of time is 30 seconds (half a minute), the
Poisson parameter will be m = (45/minute)(0.5 minute) = 23.5.
If we count the clicks in four minutes, the number of clicks will be
a Poisson random variable with m = (45/minute)(4 minutes) =
180. Note that m will always be a number, and will not contain
a “per minute” or “per square foot”, or anything. (That will be
part of the rate α.)

2.3 Connection to Binomial Distribution and
Derivation of pmf

The key information that lets us derive the pmf of a Poisson
distribution is what happens if you break the interval up into
smaller pieces. If there’s a Poisson process at play, the number of
events in each subinterval will also be a Poisson random variable,
and they will all be independent of each other. So if we divide
the day into 100 equal pieces of 14 minutes 24 seconds each,
the number of traffic deaths in each is an independent Poisson
random variable with a mean value of 11.83. Now, in practice
this assumption will often not quite be true: the rate of traffic
deaths is higher at some times of the day than others, some
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patches of ground may be more prone to be rained on because
of wind patterns, etc, but we can imagine an idealized situation
in which this subdivision works.

Okay, so how do we get the pmf? Take the interval in question
(time interval, area of ground, or whatever) and divide it into n
pieces. Each one of them will have an average of m/n events. If
we make n really big, so thatm/n� 1, the probability of getting
one event in that little piece will be small, and the probability
that two or more of them happen to occur in the same piece
is even smaller, and we can ignore it to a good approximation.
(We can always make the approximation better by making n
bigger.) That means that the number of events in that little
piece, call it Y , has a pmf of

p(Y = 0) ≈ 1− p (2.1a)

p(Y = 1) = p (2.1b)

p(Y > 1) ≈ 0 (2.1c)

In order to have E(Y ) = m/n, the probability of an event oc-
curring in that little piece has to be p = m/n.

But we have now described the conditions for a binomial dis-
tribution! Each of the n tiny sub-pieces of the interval is like
a trial, a piece with an event is a success, and a piece with no
event is a failure. So the pmf for this Poisson random variable
must be the limit of a binomial distribution as the number of
trials gets large:

p(x) = lim
n→∞

n!

x!(n− x)!

(m
n

)x (
1− m

n

)n−x
=
mx

x!
lim
n→∞

(
1− m

n

)n n!

(n− x)!

(
1/n

1−m/n

)x (2.2)

Now, the ratio of factorials is a product of x things:

n!

(n− x)!
= n(n− 1)(n− 2) · · · (n− x+ 1) (2.3)

The last factor is of course also the product of x things, i.e., x
identical copies of

1/n

1−m/n
=

1

n−m
. (2.4)

But that means the two of them together give you

n!

(n− x)!

(
1/n

1−m/n

)x
=

n

n−m
n− 1

n−m
n− 2

n−m
· · · n− x+ 1

n−m
(2.5)

which is the product of x fractions, each of which goes to 1 as
n goes to infinity, so we can lose that factor in the limit and get

p(x) =
mx

x!
lim
n→∞

(
1− m

n

)n
=
mx

x!
e−m . (2.6)

where we’ve used the exponential function

eα = lim
n→∞

(
1 +

α

n

)n
; (2.7)

If we recall that the exponential function also has the Maclaurin
series

eα =
∞∑
k=0

αk

k!
(2.8)

we can see that the pmf

p(x) =
mx

x!
e−m (2.9)

is normalized:

∞∑
x=0

p(x) =
∞∑
x=0

mx

x!
e−m = eme−m = 1 (2.10)

9



We can also use this series to get the mgf

M(t) =
∞∑
x=0

etx
mx

x!
e−m =

(met)x

x!
e−m = eme

t

e−m = em(et−1)

(2.11)
To find the mean and variance, it’s useful once again to use the
cumulant generating function ψ(t) = lnM(t):

ψ(t) = m(et − 1) (2.12)

Differentiating gives us

ψ′(t) = met (2.13)

and

ψ′′(t) = met (2.14)

so the mean is

E(X) = ψ′(0) = m (2.15)

(which was the definition we started with) and the variance is

Var(X) = ψ′′(0) = m (2.16)

Note that these are also the limits of the mean and variance of
the binomial distribution.

We can also the mgf to show what happens when we add two
Poisson random variables with means m1 and m2; the mgf of
their sum is

M(t) = em1(et−1)em2(et−1) = e(m1+m2)(et−1) (2.17)

which is the mgf of a Poisson random variable with mean m1 +
m2, so the sum of two Poisson rvs is itself a Poisson rv.

Tuesday 15 October 2013
– No Class (Monday Schedule)

Thursday 17 October 2013
– Read Section 3.3 of Hogg

3 Gamma and Related Distributions

3.1 Gamma (Γ) Distribution

We now consider our first family of continuous distributions, the
Gamma distribution. A Gamma random variable has a pdf with
two parameters α > 0 and β > 0:

f(x) =
1

Γ(α)βα
xα−1e−x/β 0 < x <∞ (3.1)

We sometimes say that such a random variable has a Γ(α, β) dis-
tribution. As we’ll see, the β parameter just changes the scale of
the distribution function, but α actually changes the shape. We
will show how special cases of the Gamma distribution describe
situations of interest, notably the exponential distribution with
rate λ, which is Γ(1, 1

λ
), and the chi-squared distribution with r

degrees of freedom (also known as χ2(r)), which is Γ( r
2
, 2).

For now, though, let’s look at the general Gamma distribu-
tion. First of all, consider the constant 1

Γ(α)βα
. The Γ(α) in the

denominator is the Gamma function3

Γ(α) =

∫ ∞
0

uα−1e−u du (3.2)

which we introduced last week as a generalization of the factorial
function, so that if n is a non-negative integer, Γ(n + 1) = n!.

3Note that in an unfortunate collision of notation, Γ(α) is a function
which returns a number for each value of α, while Γ(α, β) is a label we use
to refer to a distribution corresponding to a choice of α and β.
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That constant is just what we need to make sure the distribution
function is normalized:∫ ∞

−∞
f(x) dx =

1

Γ(α)βα

∫ ∞
0

xα−1e−x/β dx

=
1

Γ(α)

∫ ∞
0

(
x

β

)α−1

e−x/β
dx

β

=
1

Γ(α)

∫ ∞
0

uα−1e−u du =
1

Γ(α)
Γ(α) = 1

(3.3)

where we have made the change of variables u = x/β. The cdf
for the Gamma distribution is

F (x) =

∫ x

−∞
f(y) dy =

1

Γ(α)

∫ x

0

(
y

β

)α−1

e−y/β
dy

β

=
1

Γ(α)

∫ x/β

0

uα−1e−u du

(3.4)

which is usually written in terms of either the incomplete gamma
function

γ(y;α) =

∫ y

0

uα−1e−u du (3.5)

defined so that limy→∞ γ(y;α) = Γ(α) or the standard Gamma
cdf

F (y;α) =
1

Γ(α)

∫ y

0

uα−1e−u du (3.6)

defined so that limy→∞ F (y;α) = 1. One or both of these func-
tions may be available in your favorite software package, or tab-
ulated in a book. (For instance, F (y;α) is tabulated in the back
of Devore, Probability and Statistics for Engineering and the Sci-
ences, the book you presumably used for intro Probability and
Statistics.) Hogg does not tabulate these, but it does include
some values of the chi-squared cdf, which is a special case of the
Gamma cdf.

Note that if we define a random variable Y = X/β, where X
is a Γ(α, β) random variable, its pdf is

fY (y) =
dP

dy
=
dP/dx

dy/dx
=
fX(βy)

1/β
=

1

Γ(α)
yα−1e−y (3.7)

which is a Γ(α, 1) distribution. This is what we mean when we
say β is a scale parameter.

Now we turn to the mgf of the Gamma distribution, which is

M(t) = E(etX) =
1

Γ(α)βα

∫ ∞
0

xα−1e−x/βetx dx

=
1

Γ(α)βα

∫ ∞
0

xα−1 exp

(
−
[

1

β
− t
]
x

)
dx

(3.8)

If we require t < 1
β

and make the substitution u = ( 1
β
− t)x so

x = β
1−βt u, this becomes

M(t) =
1

Γ(α)βα

(
β

1− βt

)α ∫ ∞
0

uα−1e−u du = (1−βt)−α (3.9)

If we again construct the cumulant generating function

ψ(t) = lnM(t) = −α ln(1− βt) (3.10)

we find the derivative

ψ′(t) = αβ(1− βt)−1 (3.11)

so the mean is

E(X) = ψ′(0) = αβ (3.12)

and the second derivative

ψ′′(t) = αβ2(1− βt)−2 (3.13)
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so the variance is

Var(X) = ψ′′(0) = αβ2 (3.14)

which should be familiar results from elementary probability and
statistics.

Even more useful than the mean and variance, the mgf can
be used to show what happens when we add two independent
Gamma random variables with the same scale parameter, say
X1 which is Γ(α1, β) and X2 which is Γ(α2, β). The mgf of their
sum is

M(t) = M1(t)M2(t) = (1− βt)−α1(1− βt)−α2 = (1− βt)−(α1+α2)

(3.15)
which we see is the mgf of a Γ(α1 +α2, β) random variable. So if
you add Gamma rvs with the same scale parameter, their sum
is another Gamma rv whose scale parameter is the sum of the
individual scale parameters.

3.2 Exponential Distribution

Suppose we have a Poisson process with rate λ, so that the
probability mass function of the number of events occurring in
any period of time of duration t is

P (n events in t) =
(λt)n

n!
e−λt (3.16)

We can show that, if you start counting at some moment, the
time you have to wait until k more events have occurred is a
Γ(k, 1

λ
) random variable. In Hogg they show this by summing

the Poisson distribution from 0 to k−1, but once we know what
happens when you sum Gamma random variables, all we actu-
ally have to do is show that the waiting time for the first event
is a Γ(1, 1

λ
) random variable. If you start waiting for the second

event once the first has happened, that waiting time is another
(independent) Γ(1, 1

λ
) random variable, and so forth. The wait-

ing time for the kth event is thus the sum of k independent
Γ(1, 1

λ
) random variables, which by the addition property we’ve

just seen is a Γ(k, 1
λ
) random variable.

So we turn to the question of the waiting time for the first
event, and return to the Poisson distribution. In particular,
evaluating the pmf at n = 0 we get

P (no events in t) =
(λt)0

0!
e−λt = e−λt (3.17)

Now pick some arbitrary moment and let X be the random
variable describing how long we have to wait for the next event.
IfX ≤ t that means there are one or more events occurring in the
interval of length t starting at that moment, so the probability
of this is

P (X ≤ t) = 1− P (no events in t) = 1− e−λt (3.18)

But that is the definition of the cumulative distribution function,
so

F (x) = P (X ≤ x) = 1− e−λx (3.19)

Note that it doesn’t make sense for X to take on negative values,
which is good, since F (0) = 0. This means that technically,

F (x) =

{
0 x < 0

1− e−λx x ≥ 0
(3.20)

We can differentiate (with respect to x) to get the pdf

f(x) =

{
0 x < 0

λe−λx x ≥ 0
(3.21)

This is known as the exponential distribution, and if we recall
that Γ(0) = 1! = 1, we see that this is indeed the Gamma
distribution where α = 1 and β = 1

λ
.
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3.3 Chi-Square (χ2) Distribution

We turn now to another special case of the Gamma distribution.
If we set α to r

2
, where r is some positive integer, and β to 2, we

get the pdf

f(x) =
1

Γ( r
2
)2r/2

x
r
2
−1e−x/2 0 < x <∞ (3.22)

which is known as a chi-square distribution with r degrees of
freedom, or χ2(r). Note that if we add independent chi-square
random variables, e.g., X1 which is χ2(r1) ≡ Γ( r1

2
, 2) and X2

which is χ2(r2) ≡ Γ( r2
2
, 2), their sum X1 +X2 is Γ( r1

2
+ r2

2
, 2) ≡

χ2(r1 + r2). So in particular the sum of r independent χ2(1)
random variables is a χ2(r) random variable. Next week, we’ll
see that a χ2(1) random variable is the square of a standard
normal random variable, so a χ2(r) is the sum of the squares of
r independent standard normal random variables.

Note that Table II in Appendix C of Hogg has some per-
centiles (values of x for which P (X < x) is some given value)
for chi-square distributions with various numbers of degrees of
freedom. This means that if you have a Gamma random variable
which you can scale to be a chi-square random variable (which
is basically possible if α is any integer or half-integer), you can
get percentiles of that random variable.

3.4 Beta (β) Distribution

Please read about the β distribution in section 3.3 of Hogg.

Tuesday 22 October 2013
– Read Section 3.4 of Hogg

4 The Normal Distribution

A random variable X follows a normal distribution, also known
as a Gaussian distribution, with parameters µ and σ > 0, known
as N(µ, σ2), if its pdf is

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(4.1)

To show that this is normalized, we take the integral∫ ∞
−∞

f(x) dx =
1

σ
√

2π

∫ ∞
−∞

e−
(x−µ)2

2σ2 dx =
1√
2π

∫ ∞
−∞

e−z
2/2 dz

(4.2)
where we have made the substitution z = (x−µ)/σ. The integral

I =

∫ ∞
−∞

e−z
2/2 dz (4.3)

is a bit tricky; there’s no ordinary function whose derivative is
e−z

2/2, so we can’t just do an indefinite integral and evaluate at
the endpoints. But we can do the definite integral by writing

I2 =

(∫ ∞
−∞

e−x
2/2 dx

)(∫ ∞
−∞

e−y
2/2 dy

)
=

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2 dx dy

(4.4)

If we interpret this as a double integral in Cartesian coördinates,
we can change to polar coördinates r and φ, and write

I2 =

∫ 2π

0

∫ ∞
0

e−r
2/2 r dr dφ = 2π

∫ ∞
0

e−r
2/2 r dr

= −2π e−r
2/2
∣∣∣∞
0

= 2π

(4.5)
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so

I =

∫ ∞
−∞

e−z
2/2 dz =

√
2π (4.6)

and the pdf does integrate to one.
To get the mgf, we have to take the integral

M(t) =
1

σ
√

2π

∫ ∞
−∞

exp

(
−(x− µ)2

2σ2
+ tx

)
dx (4.7)

If we complete the square in the exponent, we get

−(x− µ)2

2σ2
+ tx = − 1

2σ2

(
x− [µ+ tσ2]

)2
+

1

2σ2

(
2µtσ2 + t2σ4

)
= − 1

2σ2

(
x− [µ+ tσ2]

)2
+ µt+

t2σ2

2
(4.8)

so

M(t) =
1

σ
√

2π
eµt+

t2σ2

2

∫ ∞
−∞

exp

(
−(x− [µ+ tσ2])2

2σ2

)
dx

=
1

σ
√

2π
eµt+

t2σ2

2

∫ ∞
−∞

e−z
2/2 dz = eµt+

t2σ2

2

(4.9)

This means that the cumulant generating function is

ψ(t) = lnM(t) = µt+
σ2t2

2
(4.10)

taking derivatives gives

ψ′(t) = µ+ σ2t (4.11)

so the mean is
E(X) = ψ′(0) = µ (4.12)

and
ψ′′(t) = σ2 (4.13)

so the variance is

Var(X) = ψ′′(0) = σ2 (4.14)

which means that the parameters µ and σ are the mean and
standard deviation of the distribution, as their names suggest.
Note that this is in some sense the “simplest” possible distri-
bution with a given mean and variance. For a general random
variable, since ψ(0) = 0, ψ′(0) = E(X) and ψ′′(0) = Var(X),
the first few terms of the Maclaurin series for ψ(t) must be

ψ(t) = t E(X) +
t2

2
Var(X) +O(t3) (4.15)

Given a random variable X which follows a N(µ, σ2) distri-
bution, we can define Z = X−µ

σ
. Its pdf will be

fZ(z) = σfX(µ+ zσ) =
1√
2π
e−z

2/2 (4.16)

which is a N(1, 0) distribution, also known as a standard normal
distribution.

The cdf of a N(µ, σ) random variable will be

F (x) =
1

σ
√

2π

∫ x

−∞
e−(u−µ)2/(2σ2) du =

1√
2π

∫ (x−µ)/σ

−∞
e−t

2/2 dt

(4.17)
again, e−t

2/2 is not the derivative of any known function, but it’s
useful enough that we define a function

Φ(z) =
1√
2π

∫ z

−∞
e−t

2/2 dt (4.18)

which is tabulated in lots of places. In terms of this, the cdf for
a N(µ, σ2) rv is

P (X ≤ x) = Φ

(
x− µ
σ

)
(4.19)
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If we add two independent Gaussian random variables, X1

and X2, following N(µ1, σ
2
1) and N(µ2, σ

2
2) distributions, respec-

tively, their sum has the mgf

M(t) = M1(t)M2(t) = exp

(
tµ1 +

t2σ2
1

2

)
exp

(
tµ2 +

t2σ2
2

2

)
= exp

(
t(µ1 + µ2) +

t2(σ2
1 + σ2

2)

2

)
(4.20)

which is the mgf of aN(µ1+µ2, σ
2
1+σ2

2) distribution. (In general,
if we add independent random variables, their sum has a mean
which is the sum of the means and a variance which is the sum
of the variances, but what’s notable here is the sum obeys a
normal distribution, so it’s characterized only by its mean and
variance.

Finally, suppose we have r independent Gaussian random
variables {Xi} with means µi and variances σ2

i . Consider the
combination

Y =
r∑
i=1

(
Xi − µi
σi

)2

(4.21)

We can show that this obeys a χ2(r) distribution

fY (y) =
1

Γ(r/2)2r/2
y
r
2
−1e−y/2 (4.22)

As we saw last time, the sum of r independent χ2(1) random
variables is a χ2(r) random variable, so all we need to do is show

that if X is N(µ, σ2), so that Z = X−µ
σ

is N(0, 1), Y = (X−µ)2

σ
=

Z2 is χ2(1). Now, since

fZ(z) =
1√
2π
e−z

2/2 −∞ < z <∞ (4.23)

we can’t quite use the usual formalism for transformation of
pdfs, since the transformation Y = Z2 is not invertible. But

since fZ(−z) = fZ(z) it’s not hard to see that if we define a rv
W = |Z|, it must have a pdf

fW (w) = fZ(−w) + fZ(w) = 2fZ(z) =
2√
2π
e−w

2/2 0 < w <∞

(4.24)
and then we can use the transformation y = w2, w = y1/2 to
work out

fY (y) =
dP

dy
=
dP

dw

dw

dy
=

1

2
y−1/2fW (y1/2)

=
1√
2π
y−1/2e−y/2 0 < y <∞

(4.25)

If we recall the χ2(1) pdf from last time, it was

f(y) =
1

Γ(1/2)21/2
y−1/2e−y/2 0 < y <∞ (4.26)

so the pdf of Y = Z2 is the χ2(1) pdf, if the value of Γ(1/2)
is
√
π. Now, if we think about it, that has to be the case, in

order for the two pdfs to be normalized, but we can work out
the value directly. Recall the Gamma function

Γ(α) =

∫ ∞
0

tα−1e−t dt (4.27)

which is a finite positive number for any α > 0. (For positive
integer n, we know that Γ(n) = (n− 1)!.) Thus

Γ(1/2) =

∫ ∞
0

t−1/2e−t dt (4.28)

We can show that the integral is well-behaved at the lower limit
of t = 0, and evaluate it, by changing variables to u =

√
2t so

that t = u2/2 and du = 21/2t−1/2 dt; thus

Γ(1/2) =
1√
2

∫ ∞
0

e−u
2

du =
1√
2

√
2π

2
=
√
π (4.29)
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as expected. We’ve used the symmetry of the integrand to say
that ∫ ∞

0

e−u
2

du =
1

2

∫ ∞
−∞

e−u
2

du =

√
2π

2
(4.30)

Thursday 24 October 2013
– Read Section 3.5 of Hogg

5 Multivariate Normal Distribution

5.1 Linear Algebra: Reminders and Notation

If A is an m× n matrix:

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 (5.1)

and B is an n× p matrix,

B =


B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...
Bn1 Bn2 · · · Bnp

 (5.2)

then their product C = AB is an m × p matrix as shown in
Figure 1 so that Cik =

∑n
j=1 AijBjk.

If A is an m × n matrix, B = AT is an n × m matrix with
elements Bij = Aji:
B11 B12 · · · B1m

B21 B22 · · · B2m
...

...
. . .

...
Bn1 Bn2 · · · Bnm

 = B = AT =


A11 A21 · · · Am1

A12 A22 · · · Am2
...

...
. . .

...
A1n A2n · · · Amn


(5.4)

If v is an n-element column vector (which is an n× 1 matrix)
and A is an m × n matrix, w = Av is an m-element column
vector (i.e., an m× 1 matrix):

w1

w2
...
wm

 = w = Av =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn



v1

v2
...
vn



=


A11v1 + A12v2 + · · ·+ A1nvn
A21v1 + A22v2 + · · ·+ A2nvn

...
Am1v1 + Am2v2 + · · ·+ Amnvn


(5.5)

so that wi =
∑n

j=1 Aijvj.

If u is an n-element column vector, then uT is an n-element
row vector (a 1× n matrix):

uT =
(
u1 u2 · · · un

)
(5.6)

If u and v are n-element column vectors, uTv is a number,
known as the inner product :

uTv =
(
u1 u2 · · · un

)

v1

v2
...
vn


= u1v1 + u2v2 + · · ·+ unvn =

n∑
i=1

uivi

(5.7)

If v is an m-element column vector, and w is an n-element
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C = AB =


C11 C12 · · · C1p

C21 C22 · · · C2p
...

...
. . .

...
Cm1 Cm2 · · · Cmp

 =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn



B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...
Bn1 Bn2 · · · Bnp



=


A11B11 + A12B21 + · · ·+ A1nBn1 A11B12 + A12B22 + · · ·+ A1nBn2 · · · A11B1p + A12B2p + · · ·+ A1nBnp

A21B11 + A22B21 + · · ·+ A2nBn1 A21B12 + A22B22 + · · ·+ A2nBn2 · · · A21B1p + A22B2p + · · ·+ A2nBnp
...

...
. . .

...
Am1B11 + Am2B21 + · · ·+ AmnBn1 Am1B12 + Am2B22 + · · ·+ AmnBn2 · · · Am1B1p + Am2B2p + · · ·+ AmnBnp


(5.3)

Figure 1: Expansion of the product C = AB to show Cik =
∑n

j=1 AijBjk.

column vector, A = vwT is an m× n matrix


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 = A = vwT

=


v1

v2
...
vm

(w1 w2 · · · wm
)

=


v1w1 v1w2 · · · v1wn
v2w1 v2w2 · · · v2wn

...
...

. . .
...

vmw1 vmw2 · · · vmwn


(5.8)

so that Aij = viwj.

If M and N are n× n matrices, the determinant det(MN) =
det(M) det(N).

If M is an n×n matrix (known as a square matrix), the inverse
matrix M−1 is defined by M−1M = 1n×n = MM−1 where 1n×n

is the identity matrix

1n×n =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 (5.9)

If M−1 exists, we say M is invertible.
If M is a real, symmetric n × n matrix, so that MT = M,

i.e., Mji = Mij, there is a set of n orthonormal eigenvectors
{v1,v2, . . . ,vn} with real eigenvalues {λ1, λ2, . . . , λn}, so that
Mvi = λivi. Orthonormal means

vT
i vj = δij =

{
0 i 6= j

1 i = j
(5.10)

where we have introduced the Kronecker delta symbol δij. The
eigenvalue decomposition means

M =
n∑
i=1

λiviv
T
i (5.11)
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The determinant is det(M) =
∏n

i=1 λi. If none of the eigenvalues
{λi} are zero, M is invertible, and the inverse matrix is

M−1 =
n∑
i=1

1

λi
viv

T
i (5.12)

If all of the eigenvalues {λi} are positive, we say M is positive
definite. If none of the eigenvalues {λi} are negative, we say M
is positive semi-definite.

5.2 Special Case: Independent Gaussian
Random Variables

Before considering the general multivariate normal distribution,
consider the case of n independent normally-distributed random
variables {Xi} with means {µi} and variances {σi}. The pdf for
Xi, the ith random variable, is

fi(xi) =
1

σi
√

2π
exp

(
−(xi − µi)2

2σ2
i

)
(5.13)

and its mgf is

Mi(ti) = exp

(
tiµi +

1

2
t2iσ

2
i

)
(5.14)

If we consider the random variables Xi to be the elements of a
random vector

X =


X1

X2
...
Xn

 (5.15)

its expectation value is

E(X) = µ =


µ1

µ2
...
µn

 (5.16)

and its variance-covariance matrix is

Cov(X) = Σ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n

 (5.17)

which is diagonal because the different Xis are independent of
each other and therefore have zero covariance. We can thus
write the joint mgf for these random variables as

M(t) =
n∏
i=1

Mi(ti) = exp

(
n∑
i=1

[
tiµi +

1

2
t2iσ

2
i

])

= exp

(
tTµ+

1

2
tTΣt

) (5.18)

We can also write the joint pdf

f(x) =
n∏
i=1

fi(xi) =
1√∏n

i=1 2πσ2
i

exp

(
−1

2

n∑
i=1

(xi − µi)2

σ2
i

)
(5.19)

in matrix form if we consider a few operations on the matrix
Σ. First, since it’s a diagonal matrix, its determinant is just the
product of its diagonal entries:

det Σ =
n∏
i=1

σ2
i (5.20)
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and, for that matter,

det(2πΣ) =
n∏
i=1

2πσ2
i (5.21)

Also, we can invert the matrix to get

Σ−1 =


1
σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
n

 (5.22)

so
n∑
i=1

(xi − µi)2

σ2
i

= (x− µ)TΣ−1(x− µ) (5.23)

which makes the pdf for the random vector X

f(x) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(5.24)

The generalization from n independent normal random variables
to an n-dimensional multivariate normal distribution is to use
the same matrix form for M(t) and just to replace Σ, which was
a diagonal matrix with positive diagonal entries, with a general
symmetric positive semi-definite matrix. So one change is to
allow Σ to have off-diagonal entries, and another is to allow
it to have zero eigenvalues. If Σ is positive definite, i.e., its
eigenvalues are all positive, we can use the matrix expression for
the pdf f(x) as well. As we’ll see, if Σ has some zero eigenvalues,
we won’t be able to define a pdf for the random vector X.

5.3 Multivariate Distributions

Recall that a set of n random variables X1, X2, . . .Xn can be
combined into a random vector

X =


X1

X2
...
Xn

 (5.25)

with expectation value

E(X) = µ =


µ1

µ2
...
µn

 (5.26)

and variance-covariance matrix

Σ = Cov(X) = E([X− µ]T[X− µ])

=


Var(X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X1, X2) Var(X2) · · · Cov(X2, Xn)
...

...
. . .

...
Cov(X1, Xn) Cov(X2, Xn) · · · Var(Xn)


(5.27)

The variance-covariance matrix must be positive semi-definite,
i.e., have no negative eigenvalues. To see why that is the case,
let {λi} be the eigenvalues and {vi} be the orthonormal eigen-
vectors, so that Σ =

∑n
i=1 vT

iλivi. For each i define a random
variable Xi = vT

i X. It has mean E(Xi) = vT
i µ and variance

Var(Xi) = E([vT
i (X− µ)]2) = E[vT

i (X− µ)(X− µ)Tvi]

= vT
i E[(X− µ)(X− µ)T]vi = vT

i Σvi = λiv
T
i vi = λi

(5.28)
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Since the variance of a random variable must be non-negative,
Σ cannot have any negative eigenvalues.

Incidentally, we can see that the different random variables
{Xi} are uncorrelated, since

Cov(Xi,Xj) = E[vT
i (X− µ)(X− µ)Tvj]

= vT
i E[(X− µ)(X− µ)T]vj = vT

i Σvj = λjv
T
i vj = λiδij

(5.29)

Remember that Cov(Xi,Xj) = 0 does not necessarily imply that
Xi and Xj are independent. (It will, however, turn out to be the
case for normally distributed random variables.)

Note that if we assemble the {Xi} into a column vector

X =


X1

X2
...
Xn

 =


vT

1

vT
2
...

vT
n

X = ΓX (5.30)

where the matrix Γ is made up out of the components of the
orthonormal eigenvectors {vi}:

Γ =


vT

1

vT
2
...

vT
n

 =


(v1)1 (v1)2 · · · (v1)n
(v2)1 (v2)2 · · · (v2)n

...
...

. . .
...

(vn)1 (vn)2 · · · (vn)n

 (5.31)

This matrix is not symmetric, but it is orthogonal, meaning that

ΓT = Γ−1. We can see this from

ΓΓT =


vT

1

vT
2
...

vT
n

(v1 v2 · · · vn
)

=


vT

1 v1 vT
1 v2 · · · vT

1 vn
vT

2 v1 vT
2 v2 · · · vT

2 vn
...

...
. . .

...
vT
nv1 vT

nv2 · · · vT
nvn

 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = 1

(5.32)

This matrix Γ can be thought of a transformation from the
original basis to the eigenbasis for Σ. One effect of this is that
it diagonalizes Σ:

ΓΣΓT =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = Λ (5.33)

Finally, recall that the moment generating function is defined
as

M(t) = E(etX) (5.34)

and that if we define ψ(t) = lnM(t),

∂ψ

∂ti

∣∣∣∣
t=0

= µi (5.35)

and
∂2ψ

∂ti∂tj

∣∣∣∣
t=0

= Cov(X1, X2) (5.36)
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This means that if we do a Maclaurin expansion of ψ(t) we get,
in general,

ψ(t) = tTµ+
1

2
tTΣt + . . . (5.37)

where the terms indicated by . . . have three or more powers of
t.

5.4 General Multivariate Normal Distribu-
tion

We define a multivariate normal random vector X as a random
vector having the moment generating function

M(t) = exp

(
tTµ+

1

2
tTΣt

)
(5.38)

We refer to the distribution as Nn(µ,Σ). Note that this is equiv-
alent to starting with the Maclaurin series for ψ(t) = lnM(t)
and cutting it off after the quadratic term.

We start with the mgf rather than the pdf because it applies
whether the variance-covariance matrix Σ is positive definite
or only positive semi-definite, i.e., whether it has one or more
zero eigenvalues. To see what happens if one or more of the
eigenvalues is zero, we use the orthonormal eigenvectors {vi} of
Σ to combine the random variables in X into n uncorrelated
random variables {Xi}, where Xi = vT

i X, which have means
E(Xi) = vT

i µ and variances Var(Xi) = λi. If we combine the
{Xi} into a random vector

X = ΓX (5.39)

where

Γ =


vT

1

vT
2
...

vT
n

 (5.40)

is the orthogonal matrix made up out of eigenvector components,
X has mean E(X ) = Γµ and variance-covariance matrix

Cov(X ) = Λ = ΓΣΓT =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 (5.41)

The random vector X also follows a multivariate normal dis-
tribution, in this case Nn(Γµ,Λ). To show this, we’ll show
the more general result (which is Hogg’s theorem 3.5.1), that
if X is a Nn(µ,Σ) multivariate normal random vector, A is an
m×n constant matrix and b is an m-element column vector, the
random vector Y = AX + b also obeys a multivariate normal
distribution. (Note that this works whether m is equal to, less
than, or greater than n!) We prove this using the mgf. The mgf
for Y is

MY (t) = E[exp(tTY)] = E[exp(tTAX + tTb)]

= et
TbE[exp([ATt]TX)]

(5.42)

Now here is the key step, which Hogg doesn’t elaborate on. t
is an m-element column vector. A is an m × n matrix, so its
transpose AT is an n ×m matrix, and the combination ATt is
an n-element column vector, whose transpose is the n-element
row vector

[ATt]T = tTA (5.43)

Therefore, the expectation value in the last line above is just
the mgf for the original multivariate normal random vector X
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evaluated at the argument ATt:

E[exp([ATt]TX)] = MX(ATt)

= exp

(
[ATt]Tµ+

1

2
[ATt]TΣ[ATt]

)
= exp

(
tTAµ+

1

2
tTAΣATt

) (5.44)

This makes the mgf for Y equal to et
Tb times this, or

MY (t) = exp

(
tT[Aµ+ b] +

1

2
tTAΣATt

)
(5.45)

which is the mgf for a normal random vector with mean Aµ+b
and variance-covariance matrix AΣAT, i.e., one that obeys a
Nm(Aµ+ b,AΣAT) distribution.

So, we return to the random vector X = ΓX, which we now
see is a multivariate normal random vector with mean Γµ and
diagonal variance-covariance matrix Λ. Its mgf is

MX (t) = exp

(
tTΓµ+

1

2
tTΛt

)
= exp

(
n∑
i=1

[tiv
T
i µ+

1

2
λit

2
i ]

)

=
n∏
i=1

exp

(
tiv

T
i µ+

1

2
λit

2
i

)
=

n∏
i=1

MXi(ti)

(5.46)

which is the mgf of n independent random variables. There
are two possibilities: either Σ (and thus Λ) is positive definite,
which means all of the {λi} are positive, or one or more of the
{λi} are zero.

In the first case, we have the special case we considered be-
fore, n independent normally-distributed random variables, so

the joint pdf is

fX (ξ) =
n∏
i=1

fXi(ξi) =
1√

det(2πΛ)
exp

(
−1

2
(ξ − Γµ)TΛ−1(ξ − Γµ)

)
(5.47)

We can then do a multivariate transformation to get the pdf for
X = Γ−1X = ΓTX . The Jacobian of the transformation is ΓT,
whose determinant is either 1 or −1, because

1 = det 1 = det(ΓΓT) = (det Γ)2 (5.48)

(This is true for any orthogonal matrix.) This means |det Γ| = 1,
and the pdf for X is simply

fX(x) = fX (Γx) (5.49)

If we also note that det Λ =
∏n

i=1 λi = det Σ, we see that

fX(x) =
1√

det(2πΛ)
exp

(
−1

2
Γ(x− µ)TΛ−1Γ(x− µ)

)
=

1√
det(2πΣ)

exp

(
−1

2
(x− µ)TΓTΛ−1Γ(x− µ)

)
(5.50)

But the combination ΓTΛ−1Γ is just the inverse of Σ, because

(Λ)−1 = (ΓΣΓT)−1 = (ΓT)−1Σ−1Γ−1 (5.51)

so we find that, for arbitrary positive definite symmetric Σ,

fX(x) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(5.52)

which is exactly the generalization we expected from the n-
independent-random-variable case.
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On the other hand, if Σ has one or more zero eigenvalues, so
that det Σ = 0, and Σ−1 is not defined, that pdf won’t make
sense. In that case, consider the random variable Xi correspond-
ing to the zero eigenvalue λi = 0. Its mgf is

E(etiXi) = MXi(ti) = exp

(
tiv

T
i µ+

1

2
λit

2
i

)
= exp

(
tiv

T
i µ
)

(5.53)
but the only way that is possible is if Xi is always equal to vT

i µ,
i.e., Xi is actually a discrete random variable with pmf

P (Xi = ξi) =

{
1 ξi = vT

i µ

0 otherwise
(5.54)

This is the limit of a normal distribution as its variance goes to
zero.

Returning to the case where Σ is positive definite, so that
each Xi is an independent N(vT

i µ, λi) random variable, we can
construct the corresponding standard normal random variable

Zi = (λi)
−1/2(Xi − vT

i µ) = (λi)
−1/2vT

i (Xi − µ) (5.55)

which we could combine into a Nn(0,1) random vector

Z =


Z1

Z2
...
Zn

 (5.56)

However, it’s actually more convenient to combine them into a
different Nn(0,1) random vector

Z =
n∑
i=1

viZi = ΓTZ =
n∑
i=1

vi(λi)
−1/2vT

i (X−µ) = Σ1/2(X−µ)

(5.57)

with pdf

fZ(z) =
1

(2π)n/2
e−z

Tz/2 (5.58)

Hogg uses this as the starting point for deriving the pdf for the
multivariate normal random vector X, with the factor of

1√
det Σ

=
∣∣∣det(Σ−1/2)

∣∣∣ (5.59)

coming from the Jacobian determinant associated with the
transformation.

Tuesday 29 October 2013
– Read Section 3.6 of Hogg

5.5 Consequences of the Multivariate Nor-
mal Distribution

Recall that if X is a multivariate normal random vector, obeying
a Nn(µ,Σ) distribution, this is equivalent to saying X has the
its mgf

MX(t) = exp

(
tTX +

1

2
tTΣt

)
(5.60)

Its mean is X = µ and its variance-covariance matrix is
Cov(X) = Σ. If the variance-covariance matrix is invertible,
then X has the probability density function

fX(x) =
1√

det(2πΣ)
exp

(
−1

2
(X− µ)TΣ−1(X− µ)

)
(5.61)
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5.5.1 Connection to χ2 Distribution

We also showed that we could make a random vector
Z1

Z2
...
Zn

 = Z = Σ−1/2(X− µ) (5.62)

which obeyed a Nn(0,1) distribution, i.e., where the {Zi} were
independent standard normal random variables. Previously, we
showed that if we took the sums of the squares of n independent
standard normal random variables, the resulting random vari-
able obeyed a chi-square distribution with n degrees of freedom.
So in this case we can construct

Y =
n∑
i=1

(Zi)
2 = ZTZ = [Σ−1/2(X− µ)]T[Σ−1/2(X− µ)]

= (X− µ)TΣ−1/2Σ−1/2(X− µ) = (X− µ)TΣ−1(X− µ)

(5.63)

and it will be a χ2(n) random variable. This is Theorem 3.5.4
of Hogg. Note that if Σ is diagonal, so that {Xi} are n indepen-
dent random variables, with Xi being N(µi, σ

2
i ), the chi-square

random variable reduces to

Y =
n∑
i=1

(
Xi − µi
σi

)2

if Σ diagonal (5.64)

5.6 Marginal Distribution

One last question to consider is, what if we split the n random
variables in the random vector X into two groups: the first m,
which we collect into a random vector X1, and the last p = m−n,

which we collect into a random vector X2, so that

X =

(
X1

X2

)
(5.65)

where

X1 =


X1

X2
...
Xm

 and X2 =


Xm+1

Xm+2
...
Xn

 (5.66)

We’d like to know what the marginal distributions for X1 and
X2 are, and also the conditional distributions for X1|X2 and
X2|X1. As a bit of bookkeeping, we partition the mean vector

µ =

(
µ1

µ2

)
(5.67)

and the variance-covariance matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
(5.68)

in the same way. µ1 is an m-element column vector, µ2 is a
p-element column vector, Σ11 is a m × m symmetric matrix,
Σ22 is a p × p symmetric matrix, Σ12 is a m × p matrix (i.e.,
m rows and p columns), and Σ21 is a p×m matrix. Since Σ is
symmetric, we must have

Σ = ΣT =

(
Σ11 ΣT

21

ΣT
12 Σ22

)
(5.69)

so Σ21 = ΣT
12. Now, it’s pretty easy to get the marginal dis-

tributions using the mgf. Partitioning t in the usual way, we
see

tTµ = tT
1µ1 + tT

2µ2 (5.70)
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and

tTΣt =
(
tT

1 tT
2

)(Σ11 Σ12

Σ21 Σ22

)(
t1

t2

)
= tT

1 Σ11t1 + tT
1 Σ12t2 + tT

2 Σ21t1 + tT
2 Σ22t2

= tT
1 Σ11t1 + 2tT

1 Σ12t2 + tT
2 Σ22t2

(5.71)

where in the last step we’ve used the fact that since tT
1 Σ12t2 is

a 1× 1 matrix, i.e., a number, it is its own transpose:

tT
1 Σ12t2 = (tT

1 Σ12t2)T = tT
2 ΣT

12t1 = tT
2 Σ21t1 (5.72)

Thus the joint mgf is

M(t) = M(t1, t2)

= exp

(
tT

1µ1 + tT
2µ2 +

1

2
tT

1 Σ11t1 + tT
1 Σ12t2 +

1

2
tT

2 Σ22t2

)
(5.73)

The mgf for X1 is thus

M1(t1) = M(t1,0) = exp

(
tT

1µ1 +
1

2
tT

1 Σ11t1

)
(5.74)

which means X1 is a Nm(µ1,Σ11) multivariate normal random
vector, and likewise the mgf for X2 is thus

M2(t2) = M(0, t2) = exp

(
tT

2µ2 +
1

2
tT

2 Σ22t2

)
(5.75)

so X2 is Np(µ2,Σ22). (Hogg also shows this as a special case
of the more general result that AX + b is a normal random
vector, where A is a m×n constant matrix and b is a m-element
constant column vector.) We see that

M1(t1)M2(t2) = exp

(
tT

1µ1 + tT
2µ2 +

1

2
tT

1 Σ11t1 +
1

2
tT

2 Σ22t2

)
(5.76)

which is only equal to M(t1, t2) if the cross-part Σ12 of the
variance-covariance matrix is zero. So X1 and X2 are indepen-
dent if and only if Σ12 = 0m×p.

5.7 Conditional Distribution

Finally, we’d like to consider the conditional distribution of X1

given that X2 = x2. Hogg proves that the distribution is a
multivariate normal, specifically Nm(µ1−Σ12Σ

−1
22 [x2−µ2],Σ11−

Σ12Σ
−1
22 Σ21), by using the mgf, but their proof assumes you

already know the form of the distribution. The proof assumes
that Σ is positive definite, and in particular that Σ−1

22 exists.
We might like to try to work this out rather than starting with
the answer, and so we could divide the pdf

f(x) = f(x1,x2) =
1√

det(2πΣ)
exp

(
−1

2
(X− µ)TΣ−1(X− µ)

)
(5.77)

by the marginal pdf

f2(x2) =
1√

det(2πΣ22)
exp

(
−1

2
(X2 − µ2)TΣ−1

22 (X2 − µ2)

)
(5.78)

to get the conditional pdf

f1|2(x1|x2) =
f(x1,x2)

f2(x2)
(5.79)

Working out the details of this is a little nasty, though, since it
requires a block decomposition of Σ−1, which exists, but is kind
of complicated. (For example [Σ−1]11 = [Σ11 −Σ12Σ

−1
22 Σ21]−1.)

It’s not hard to see that what comes out will a Gaussian in x1

minus something, though. Still, for simplicity we can limit the
explicit demonstration to the case where m = 1 and p = 1, so
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n = 2. Then all of the “blocks” in the decomposition of the
n× n matrices are just numbers, specifically

µ =

(
µ1

µ2

)
(5.80)

and

Σ =

(
Var(X1) Cov(X1, X2)

Cov(X1, X2) Var(X2)

)
=

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
(5.81)

familiar results from matrix algebra tell us that

det Σ =

∣∣∣∣ σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

∣∣∣∣ = σ2
1σ

2
2(1− ρ2) (5.82)

and

Σ−1 =
1

σ2
1σ

2
2(1− ρ2)

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
(5.83)

We know that the correlation coefficient ρ obeys ρ2 ≤ 1; in order
for Σ to be positive definite, we require ρ2 < 1. You will show
on the homework that the joint pdf for this bivariate normal
distribution is

f(x1, x2) =
1

2πσ1σ2

√
1− ρ2

× exp

(
− (x1 − µ1)2

2σ2
1(1− ρ2)

+
ρ(x1 − µ1)(x2 − µ2)

σ1σ2(1− ρ2)
− (x2 − µ2)2

2σ2
2(1− ρ2)

)
(5.84)

and since the marginal distribution for X2 is

f2(x2) =
1

σ2

√
2π

exp

(
(x2 − µ2)2

2σ2
2

)
(5.85)

the conditional pdf will be

f1|2(x1|x2) =
f(x1, x2)

f2(x2)
=

1

σ1

√
(1− ρ2)2π

× exp

(
− (x1 − µ1)2

2σ2
1(1− ρ2)

+
ρ(x1 − µ1)(x2 − µ2)

σ1σ2(1− ρ2)
− ρ2(x2 − µ2)2

2σ2
2(1− ρ2)

)
=

1

σ1

√
(1− ρ2)2π

exp

(
− 1

2σ2
1(1− ρ2)

[
x1 − µ1 −

ρσ1

σ2

(x2 − µ2)

]2
)

(5.86)

which is a normal distribution with mean µ1− ρσ1σ2 (x2−µ2) and

variance σ2
1(1− ρ2).

Thursday 31 October 2013
– Read Section 4.1 of Hogg

6 The t- and F Distributions

Our final distributions are two distributions related to the nor-
mal and chi-square distributions, which are very useful in sta-
tistical inference.

6.1 The t distribution

If Z is a standard normal random variable [N(0, 1)] and V is
a chi-square random variable with r degrees of freedom [χ2(r)],
and Z and V are independent, the combination

T =
Z√
V /r

(6.1)
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is a random variable following a t-distribution with r degrees of
freedom; its pdf is

fT (t) ∝
(

1 +
t2

r

)− r+1
2

−∞ < t <∞ (6.2)

where we have not written the explicit normalization constant,
in the interest of notational simplicity. This pdf can be derived
by the change of variables formalism. If r is very large, the t-
distribution is approximately the same as the standard normal
distribution. As you’ll show on the homework, if r = 1, it’s the
Cauchy distribution. Note that the moment generating function
for the t-distribution doesn’t exist, since for n ≥ r, the integral∫ ∞

−∞
tn
(

1 +
t2

r

)− r+1
2

dt (6.3)

diverges, as its integrand becomes, up to a constant, tn−r−1 for
large t.

6.2 The F distribution

If U is a χ2(r1) random variable and V is a χ2(r2) random vari-
able, and U and V are independent, the combination

F =
U/r1

V /r2

(6.4)

obeys an F distribution. Again its pdf can be worked out by
the change of variables method, and is, up to the normalization
constant

fF (x) ∝ x
r1
2
−1

(
1 +

r1

r2

x

)− r1+r2
2

0 < x <∞ (6.5)

6.3 Student’s Theorem

We can illustrate the usefulness of the t-distribution, also
known as Student’s t-distribution, by considering a result by
William S. Gosset, writing under the pseudonym of “Student”
while working in the Guinness brewery in Dublin. Suppose we
have n iid normal random variables, each with mean µ and vari-
ance σ2, i.e., X is a random vector with mean

E(X) = µ =


µ
µ
...
µ

 = µ e (6.6)

where we have defined the n-element column vector

e =


1
1
...
1

 (6.7)

and variance-covariance matrix

Cov(X) = σ21n×n (6.8)

We know from elementary statistics that the sample mean

X =
1

n

n∑
i=1

Xi (6.9)

and sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (6.10)

can be used to estimate the mean µ and variance σ2, respectively,
i.e., E(X) = µ and E(S2) = σ2, and also that Var(X) = σ2/n.
Student’s theorem says that the following things are also true:
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1. X obeys a normal distribution, i.e., it is N(µ, σ2/n);

2. X and S2 are independent;

3. The combination

(n− 1)S2

σ2
=

n∑
i=1

(
Xi −X

σ

)2

(6.11)

is a chi-square random variable with n−1 degrees of freedom
[χ2(n− 1)];

4. The combination

T =
X − µ
S/
√
n

(6.12)

obeys a t-distribution with n− 1 degrees of freedom.

This theorem underlies all of the confidence intervals you’ve ever
constructed for the mean of a normal distribution with unknown
variance using a small random sample drawn from that distri-
bution.

The demonstration that Student’s theorem is true is a nice
application of the multivariate normal distribution. First, we
can write

X =
1

n

n∑
i=1

Xi =
1

n
eTX (6.13)

and

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 =
1

n− 1
(X− eX)T(X− eX) (6.14)

Note that X = 1
n
eTX and

Y = X− eX =

(
1− 1

n
eeT

)
X (6.15)

are both linear transformations of X. We can combine them
into an n+ 1-element random vector


X

X1 −X
X2 −X

...
Xn −X

 =


1
n

1
n

· · · 1
n

1− 1
n
− 1
n
· · · − 1

n

− 1
n

1− 1
n
· · · − 1

n
...

...
. . .

...
− 1
n

− 1
n
· · · 1− 1

n



X1

X2
...
Xn


=

(
1
n
eT

1− 1
n
eeT

)
X = AX

(6.16)

where A is a (n+1)×n matrix. Since the original random vector
X has µ = µe and, the transformed vector AX has expectation
value

E(AX) = Aµ =

(
1
n
eT

1− 1
n
eeT

)
µe =

(
µ
0

)
(6.17)

where we’ve used the fact that

eTe =


1
1
...
1

(1 1 · · · 1
)

= n (6.18)

and

(1− 1

n
eeT)e = e− n

n
e = 0 (6.19)
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Since X has the variance-covariance matrix Σ = σ21, the trans-
formed random vector AX has variance-covariance matrix4

Cov(AX) = AΣAT =

(
1
n
eT

1− 1
n
eeT

)
σ21

(
1
n
e 1− 1

n
eeT
)

= σ2

(
eTe
n2 eT

(
1− 1

n
eeT
)(

1− 1
n
eeT
)
e

(
1− 1

n
eeT
)2

)
= σ2

(
1
n

01×n
0n×1

(
1− 1

n
eeT
))

(6.20)

Where we’ve used the fact (previously noted) that 1 − 1
n
eeT

annihilated e and also that

(1− 1

n
eeT)2 = 1− 1

n
eeT− 1

n
eeT +

1

n2
eneT = 1− 1

n
eeT (6.21)

We say that a matrix with this property is a projection matrix,
in this case onto n-dimensional vectors perpendicular to e.

Since the first row and column of Cov(AX) are all zeros, ex-
cept for the diagonal element, it means that the random variable
X, which is the first element of AX, and the random vector Y
are independent, which in turn means X and S2 = 1

n−1
YTY

are independent random variables, which is part 2 of Student’s
theorem. We’ve also seen part 1, since X is a normal random
variable whose mean is the first element of E[AX], i.e., µ and
whose variance is the (1, 1) element of Cov(AX), which is σ2/n.

To see that
(n− 1)S2

σ2
=

YTY

σ2
(6.22)

is a chi-square random variable with n − 1 degrees of freedom,
consider the variance-covariance matrix

Cov(Y) =

(
1− 1

n
eeT

)
σ2 (6.23)

4Remember that A is (n+ 1)× n, Σ is n× n, and AT is n× (n− 1), so
AΣAT is (n+ 1)× (n+ 1).

This is an n×nmatrix, but it is not invertable, so we can’t do the
usual trick to construct a χ2(n) random variable. It’s actually
not too hard to work out the eigenvalue decomposition of this
matrix; since (1 − 1

n
eeT)e = 0, we see that e is an eigenvector

with eigenvalue zero. Because the matrix 1− 1
n
eeT is a projector

onto the n− 1-dimensional subspace perpendicular to e, we can
choose any n−1 orthonormal vectors in that subspace, and they
will be eigenvectors with eigenvalue σ2. For example, take

v1 =



1/
√

2

−1
√

2
0
...
0
0


, v2 =



1/
√

6

1/
√

6

−2
√

6
...
0
0


, · · ·

vn−1 =



1/
√
n(n− 1)

1/
√
n(n− 1)

1/
√
n(n− 1)

...

1/
√
n(n− 1)

−(n− 1)/
√
n(n− 1)



(6.24)

if we let vn = e/
√
n, we have our complete set of orthonormal

eigenvectors, with λ1 = λ2 = · · · = λn−1 = σ2 and λn = 0. If we
define Yi = vT

i Y, then Y1,Y2, . . . ,Yn−1 are n − 1 independent
normal random variables each with variance σ2. (The last com-
bination is trivial, since vT

nY = 1√
n
eTY = 0.) This means the
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following combination is a χ2(n− 1) random variable:

n−1∑
i=1

(
Yi
σ

)
=

YTviv
T
i Y

σ2
=

1

σ2
YT

(
n−1∑
i=1

viv
T
i

)
Y

=
1

σ2
YT

(
1− 1

n
eeT

)
Y =

1

σ2
YTY =

n− 1

σ2
S2

(6.25)

This is point 3 of Student’s theorem.
Finally, for point 4 we construct a t-distributed random vari-

able.
X − µ
σ/
√
n

(6.26)

is a standard normal random variable, and

n− 1

σ2
S2 (6.27)

is a χ2(n− 1), we can take

T =

X−µ
σ/
√
n√

n−1
σ2 S2/(n− 1)

=
X − µ√
S2/n

(6.28)

and it will obey a t-distribution with n− 1 degrees of freedom,
which completes the proof of Student’s theorem.
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