Multivariate Distributions (Hogg Chapter Two)

STAT 405-01: Mathematical Statistics I *

Fall Semester 2013

Contents

1 Multivariate Distributions 1
1.1 Random Vectors 2
1.1.1 Two Discrete Random Variables 2
1.1.2 Two Continuous Random Variables 3
1.2 Marginalization 5
1.3 Expectation Values 6
1.3.1 Moment Generating Function 6
1.4 Transformations 6
1.4.1 Transformation of Discrete RVs 6
1.4.2 Transformation of Continuous RVs 7
2 Conditional Distributions 9
2.1 Conditional Probability 9
2.2 Conditional Probability Distributions 10
2.2.1 Example 10
2.2.2 Conditional Expectations 11
2.3 Independence 12
2.3.1 Dependent rv example \#1 13
2.3.2 \quad Dependent rv example \#1 13

[^0]2.3.3 Factoring the joint pdf 14
2.3.4 Expectation Values 14
3 Covariance and Correlation 15
4 Generalization to Several RVs 15
4.1 Transformations of Several RVs 15
Tuesday 10 September 2013

- Read Section 2.1 of Hogg

1 Multivariate Distributions

We introduced a random variable X as a function $X(c)$ which assigned a real number to each outcome c in the sample space \mathcal{C}. There's no reason, of course, that we can't define multiple such functions, and we now turn to the formalism for dealing with multiple random variables at the same time.

1.1 Random Vectors

We can think of several random variables $X_{1}, X_{2}, \ldots X_{n}$ as making up the elements of a random vector

$$
\mathbf{X}=\left(\begin{array}{c}
X_{1} \tag{1.1}\\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right)
$$

We can define an event $\mathbf{X} \in A$ corresponding to the random vector \mathbf{X} lying in some region $A \subset \mathbb{R}^{n}$, and use the probability function to define the probability $P(\mathbf{X} \in A)$ of this event.

We'll focus on $n=2$ initially, and define the joint cumulative distribution function of two random variables X_{1} and X_{2} as

$$
\begin{equation*}
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P\left[\left(X_{1} \leq x_{1}\right) \cap\left(X_{2} \leq x_{2}\right)\right] \tag{1.2}
\end{equation*}
$$

As in the case of a single random variable, this can be used as a starting point for defining the probability of any event we like. For example, with a bit of algebra it's possible to show that

$$
\begin{align*}
& P\left[\left(a_{1}<X_{1} \leq b_{1}\right) \cap\left(a_{2}<X_{2} \leq b_{2}\right)\right] \\
& \quad=F\left(b_{1}, b_{2}\right)-F\left(b_{1}, a_{2}\right)-F\left(a_{1}, b_{2}\right)+F\left(a_{1}, a_{2}\right) \tag{1.3}
\end{align*}
$$

where we have suppressed the subscript X_{1}, X_{2} since there's only one cdf of interest at the moment. We won't really dwell on this, though, since it's a lot easier to work with joint probability mass and density functions.

1.1.1 Two Discrete Random Variables

If both random variables are discrete, i.e., they can take on either a finite set of values, or at most countably many values, the joint cdf will once again be constant aside from discontinuities,
and we can describe the situation using a joint probability mass function

$$
\begin{equation*}
p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P\left[\left(X_{1}=x_{1}\right) \cap\left(X_{2}=x_{2}\right)\right] \tag{1.4}
\end{equation*}
$$

We give an example of this, in which we for convenience refer to the random variables as X and Y. Recall the example of three flips of a fair coin, in which we defined X as the number of heads. Now let's define another random variable Y, which is the number of tails we see before the first head is flipped. (If all three flips are tails, then Y is defined to be 3 . We can work out the probabilities by first just enumerating all of the outcomes, which are assumed to have equal probability because the coin is fair:

outcome c	$P(c)$	X value	Y value
HHH	$1 / 8$	3	0
HHT	$1 / 8$	2	0
HTH	$1 / 8$	2	0
HTT	$1 / 8$	1	0
THH	$1 / 8$	2	1
THT	$1 / 8$	1	1
TTH	$1 / 8$	1	2
TTT	$1 / 8$	0	3

We can look through and see that

$$
p_{X, Y}(x, y)= \begin{cases}1 / 8 & x=3, y=0 \tag{1.5}\\ 2 / 8 & x=2, y=0 \\ 1 / 8 & x=1, y=0 \\ 1 / 8 & x=2, y=1 \\ 1 / 8 & x=1, y=1 \\ 1 / 8 & x=1, y=2 \\ 1 / 8 & x=0, y=3 \\ 0 & \text { otherwise }\end{cases}
$$

This is most easily summarized in a table:

		y			
$p_{X, Y}(x, y)$		0	1	2	3
	0	0	0	0	$1 / 8$
x	1	$1 / 8$	$1 / 8$	$1 / 8$	0
	2	$2 / 8$	$1 / 8$	0	0
	3	$1 / 8$	0	0	0

Note that it's a lot more convenient to work with the joint pmf than the joint cdf. It takes a fair bit of concentration to work out the joint cdf, but if you do, you get

$$
F_{X, Y}(x, y)= \begin{cases}0 & x<0 \tag{1.6}\\ 0 & 0 \leq x<1, y<3 \\ 1 / 8 & 0 \leq x<1,3 \leq y \\ 0 & 1 \leq x, y<0 \\ 1 / 8 & 1 \leq x<2,0 \leq y<1 \\ 2 / 8 & 1 \leq x<2,1 \leq y<2 \\ 3 / 8 & 1 \leq x<2,2 \leq y<3 \\ 4 / 8 & 1 \leq x<2,3 \leq y \\ 3 / 8 & 2 \leq x<3,0 \leq y<1 \\ 5 / 8 & 2 \leq x<3,1 \leq y<2 \\ 6 / 8 & 2 \leq x<3,2 \leq y<3 \\ 8 / 8 & 2 \leq x, 3 \leq y \\ 4 / 8 & 3 \leq x, 0 \leq y<1 \\ 7 / 8 & 3 \leq x, 1 \leq y<3\end{cases}
$$

This is not very enlightening, and not really much more so if you plot it:

So instead, we'll work with the joint pmf and use it to calculate probabilities like

$$
\begin{equation*}
P(X+Y=2)=p_{X, Y}(2,0)+p_{X, Y}(1,1)=\frac{2}{8}+\frac{1}{8}=\frac{3}{8} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{align*}
& P[(0<X \leq 2) \cap(Y \leq 1)] \\
& =p_{X, Y}(1,0)+p_{X, Y}(1,1)+p_{X, Y}(2,0)+p_{X, Y}(2,1) \\
& =\frac{1}{8}+\frac{1}{8}+\frac{2}{8}+\frac{1}{8}=\frac{5}{8} \tag{1.8}
\end{align*}
$$

In general,

$$
\begin{equation*}
P[(X, Y) \in A]=\sum_{(x, y) \in A} p_{X, Y}(x, y) \tag{1.9}
\end{equation*}
$$

1.1.2 Two Continuous Random Variables

On the other hand, we may be dealing with continuous random variables, which means that the joint $\operatorname{cdf} F_{X, Y}(x, y)$ is continuous. Then we can proceed as before and define a probability density function by taking derivatives of the cdf. In this case, since
$F_{X, Y}(x, y)$ has multiple arguments, we take the partial derivative so that the joint pdf is

$$
\begin{equation*}
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y} \tag{1.10}
\end{equation*}
$$

We won't worry too much about this derivative for now, since in practice, we will start with the joint pdf rather than differentiating the joint cdf to get it. We can use the pdf to assign a probability for the random vector (X, Y) to be in some region of the (x, y) plane

$$
\begin{equation*}
P[(X, Y) \in A]=\iint_{(x, y) \in A} f_{X, Y}(x, y) d x d y \tag{1.11}
\end{equation*}
$$

For example, for a rectangular region we have

$$
\begin{equation*}
P[(a<X<b) \cap(c<Y<d)]=\int_{a}^{b}\left(\int_{c}^{d} f_{X, Y}(x, y) d y\right) d x \tag{1.12}
\end{equation*}
$$

We can connect the joint pdf to the joint cdf by considering the event $(-\infty<X \leq x) \cap(-\infty<Y \leq y)$:
$P[(-\infty<X \leq x) \cap(-\infty<Y \leq y)]=\int_{-\infty}^{x}\left(\int_{-\infty}^{y} f_{X, Y}(t, u) d u\right) d t$,
where we have called the integration variables t and u rather than x and y because the latter were already in use.

As another example, for the event $X+2 Y<c$, where the region of integration looks like this:

we have

$$
\begin{align*}
P(X+2 Y<c) & =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\frac{c-x}{2}} f_{X, Y}(x, y) d y\right) d x \tag{1.14}\\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{c-2 y} f_{X, Y}(x, y) d x\right) d y
\end{align*}
$$

For a more explicit demonstration of why this works, consult your notes from Multivariable Calculus (specifically Fubini's theorem) and/or Probability and/or http://ccrg.rit. edu/~whelan/courses/2013_1sp_1016_345/notes05.pdf

As an example, consider the joint pdf

$$
f(x, y)= \begin{cases}e^{-x-y} & 0<x<\infty, 0<y<\infty \tag{1.15}\\ 0 & \text { otherwise }\end{cases}
$$

and the event $X<2 Y$. The region over which we need to integrate is $x>0, y>0, x<2 y$:

If we do the y integral first, the limits will be set by $x / 2<y<$ ∞, and if we do the x integral first, they will be $0<x<2 y$. Doing the y integral first will give us a contribution from only one end of the integral, so let's do it that way.

$$
\begin{align*}
P(X<2 Y) & =\int_{0}^{\infty} \int_{x / 2}^{\infty} e^{-x-y} d y d x=\int_{0}^{\infty} e^{-x}\left[-e^{-y}\right]_{x / 2}^{\infty} d x \\
& =\int_{0}^{\infty} e^{-x} e^{-x / 2} d x=\int_{0}^{\infty} e^{-3 x / 2} d x=-\left.\frac{2}{3} e^{-3 x / 2}\right|_{0} ^{\infty}=\frac{2}{3} \tag{1.16}
\end{align*}
$$

1.2 Marginalization

One of the events we can define given the probability distribution for two random variables X and Y is $X=x$ for some value x. In the case of a pair of discrete random variables, this is $P(X=x)=\sum_{y} p_{X, Y}(x, y)$ But of course, $P(X=x)$ is just the
pmf of X; we call this the marginal pmf $p_{X}(x)$ and define

$$
\begin{gather*}
p_{X}(x)=P(X=x)=\sum_{y} p_{X, Y}(x, y) \tag{1.17}\\
p_{X}(y)=P(Y=y)=\sum_{x} p_{X, Y}(x, y) \tag{1.18}
\end{gather*}
$$

Returning to our coin-flip example, we can write the marginal pmfs for X and Y in the margins of the table:

y						
$p_{X, Y}(x, y)$		0	1	2	3	$p_{X}(x)$
	0	0	0	0	$1 / 8$	$1 / 8$
	1	$1 / 8$	$1 / 8$	$1 / 8$	0	$3 / 8$
	2	$2 / 8$	$1 / 8$	0	0	$3 / 8$
	3	$1 / 8$	0	0	0	$1 / 8$
	$p_{Y}(y)$	$4 / 8$	$2 / 8$	$1 / 8$	$1 / 8$	

For a pair of continuous random variables, we know that $P(X=x)=0$ but we can find the marginal cdf

$$
\begin{equation*}
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x}\left(\int_{-\infty}^{\infty} f_{X, Y}(t, y) d y\right) d t \tag{1.20}
\end{equation*}
$$

and then take the derivative to get the marginal pdf

$$
\begin{equation*}
f_{X}(x)=F_{X}^{\prime}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \tag{1.21}
\end{equation*}
$$

and likewise

$$
\begin{equation*}
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x \tag{1.22}
\end{equation*}
$$

The act of summing or integrating over arguments we don't care about, in order to get a marginal probability distribution, is called marginalizing.

Thursday 12 September 2013

- Read Section 2.2 of Hogg

1.3 Expectation Values

We can define the expectation value of a function of two discrete random variables in the straightforward way

$$
\begin{equation*}
E\left[g\left(X_{1}, X_{2}\right)\right]=\sum_{x_{1}, x_{2}} g\left(x_{1}, x_{2}\right) p\left(x_{1}, x_{2}\right) \tag{1.23}
\end{equation*}
$$

and for two continuous random variables

$$
\begin{equation*}
E\left[g\left(X_{1}, X_{2}\right)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \tag{1.24}
\end{equation*}
$$

In each case, we only consider the expectation value to be defined if the relevant sum or integral converges absolutely, i.e., if $E\left(\left|g\left(X_{1}, X_{2}\right)\right|\right)<\infty$. Note that the expectation value is still linear, i.e.,

$$
\begin{equation*}
E\left[k_{1} g_{1}\left(X_{1}, X_{2}\right)+k_{2} g_{2}\left(X_{1}, X_{2}\right)\right]=k_{1} E\left[g_{1}\left(X_{1}, X_{2}\right)\right]+k_{2} E\left[g_{2}\left(X_{1}, X_{2}\right)\right] \tag{1.25}
\end{equation*}
$$

1.3.1 Moment Generating Function

In the case of a pair of random variables, we can define the mgf as

$$
\begin{equation*}
M\left(t_{1}, t_{2}\right)=E\left(e^{t_{1} X_{1}+t_{2} X_{2}}\right)=E\left[\exp \left\{\binom{t_{1}}{t_{2}}^{\prime}\binom{X_{1}}{X_{2}}\right\}\right]=E\left(e^{\mathbf{t}^{\prime} \mathbf{x}}\right) \tag{1.26}
\end{equation*}
$$

where \mathbf{t}^{\prime} is the transpose of the column vector \mathbf{t}.
We can get the mgf for each of the random variables from the joint mgf

$$
\begin{equation*}
M_{X_{1}}\left(t_{1}\right)=M_{X_{1}, X_{2}}\left(t_{1}, 0\right) \quad \text { and } \quad M_{X_{2}}\left(t_{2}\right)=M_{X_{1}, X_{2}}\left(0, t_{2}\right) \tag{1.27}
\end{equation*}
$$

We'll actually mostly use the mgf as an easy way to identify the distribution, but it can also be used to generate moments in the usual way:

$$
\begin{equation*}
E\left[X_{1}^{m_{1}} X_{2}^{m_{2}}\right]=\left.\frac{\partial^{m_{1}+m_{2}}}{\partial^{m_{1}} t_{1} \partial^{m_{2}} t_{2}} M\left(t_{1}, t_{2}\right)\right|_{\left(t_{1}, t_{2}\right)=(0,0)} \tag{1.28}
\end{equation*}
$$

1.4 Transformations

We turn now to the question of how to transform the joint distribution function under a change of variables. In order for the distribution of $Y_{1}=u_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=u_{2}\left(X_{1}, X_{2}\right)$ to carry the same information as the distribution of X_{1} and X_{2}, the transformation should be invertable over the space of possible X_{1} and X_{2} values, i.e., we should be able to write $X_{1}=w_{1}\left(Y_{1}, Y_{2}\right)$ and $X_{2}=w_{2}\left(Y_{1}, Y_{2}\right)$.

1.4.1 Transformation of Discrete RVs

For the case of a pair of discrete random variables, things are very straightforward, since

$$
\begin{align*}
p_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) & =P\left(\left[Y_{1}=y_{1}\right] \cap\left[Y_{2}=y_{2}\right]\right) \\
& =P\left(\left[u_{1}\left(X_{1}, X_{2}\right)=y_{1}\right] \cap\left[u_{2}\left(X_{1}, X_{2}\right)=y_{2}\right]\right) \tag{1.29}\\
& =P\left(\left[X_{1}=w_{1}\left(Y_{1}, Y_{2}\right)\right] \cap\left[X_{2}=w_{2}\left(Y_{1}, Y_{2}\right)\right]\right) \\
& =p_{X_{1}, X_{2}}\left(w_{1}\left(y_{1}, y_{2}\right), w_{2}\left(y_{1}, y_{2}\right)\right)
\end{align*}
$$

For example, suppose

$$
p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}\left(\frac{1}{2}\right)^{x_{1}+x_{2}} & x_{1}=0,1,2, \ldots ; x_{2}=0,1,2, \ldots \tag{1.30}\\ 0 & \text { otherwise }\end{cases}
$$

If we define $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$ then $X_{1}=\frac{Y_{1}+Y_{2}}{2}$ and $X_{2}=\frac{Y_{1}-Y_{2}}{2}$. The only tricky part is figuring out the allowed set
of values for Y_{1} and Y_{2}. We note that $\frac{y_{1}+y_{2}}{2} \geq 0$ and $\frac{y_{1}-y_{2}}{2} \geq 0$ imply that, for a given $y_{1},-y_{1} \leq y_{2} \leq y_{1}$. That's not quite the whole story, though, since $\frac{y_{1}+y_{2}}{2}$ and $\frac{y_{1}-y_{2}}{2}$ also have to be integers, so if y_{1} is odd, y_{2} must be odd, and if y_{1} is even, y_{2} must be even. It's easiest to see what combinations are allowed by building a table for the first few values:

$\left(y_{1}, y_{2}\right)$		0	1	2	3	\cdots
x_{1}	0	$(0,0)$	$(1,-1)$	$(2,-2)$	$(3,-3)$	\cdots
	1	$(1,1)$	$(2,0)$	$(3,-1)$	$(4,-2)$	
	2	$(2,2)$	$(3,1)$	$(4,0)$	$(5,-1)$	
	3	$(3,3)$	$(4,2)$	$(5,1)$	$(6,0)$	
	\vdots	\vdots				\ddots

So evidently y_{1} can be any non-negative integer, and the possible values for y_{2} count by twos from $-y_{1}$ to y_{1}.
$p_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)= \begin{cases}\left(\frac{1}{2}\right)^{y_{1}} & y_{1}=0,1,2, \ldots ; \\ 0 & y_{2}=-y_{1},-y_{1}+2, \ldots, y_{1}-2, y_{1} \\ \text { otherwise }\end{cases}$

1.4.2 Transformation of Continuous RVs

For the case of the transformation of continuous random variables we have to deal with the fact that $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ and $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$ are probability densities and the volume (area) element has to be transformed from one set of variables to the other. If we write $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \sim \frac{d^{2} P}{d x_{1} d x_{2}}$ and $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) \sim$ $\frac{d^{2} P}{d y_{1} d y_{2}}$, the transformation we'll need is

$$
\begin{equation*}
\frac{d^{2} P}{d y_{1} d y_{2}} \sim\left|\operatorname{det} \frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(y_{1}, y_{2}\right)}\right| \frac{d^{2} P}{d x_{1} d x_{2}} \tag{1.32}
\end{equation*}
$$

where we use the determinant of the Jacobian matrix

$$
\frac{\partial\left(y_{1}, y_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}=\left(\begin{array}{ll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \tag{1.33}\\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right)
$$

which may be familiar from the transformation of the volume element

$$
\begin{equation*}
d y_{1} d y_{2}=\left|\operatorname{det} \frac{\partial\left(y_{1}, y_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}\right| d x_{1} d x_{2} \tag{1.34}
\end{equation*}
$$

if we change variables in a double integral.
To get a concrete handle on this, consider an example. Let X and Y be continuous random variables with a joint pdf

$$
f_{X, Y}(x, y)= \begin{cases}\frac{4}{\pi} e^{-x^{2}-y^{2}} & 0<x<\infty ; 0<y<\infty \tag{1.35}\\ 0 & \text { otherwise }\end{cases}
$$

If we want to calculate the probability that $X^{2}+Y^{2}<a^{2}$ we have to integrate over the part of this disc which lies in the first quadrant $x>0, y>0$ (where the pdf is non-zero):

The limits of the x integral are determined by $0<x$ and $x^{2}+$ $y^{2}<a$, i.e., $x<\sqrt{a^{2}-y^{2}}$; the range of y values represented can be seen from the figure to be $0<y<a$, so we can write the probability as

$$
\begin{equation*}
P\left(X^{2}+Y^{2}<a^{2}\right)=\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} \frac{4}{\pi} e^{-x^{2}-y^{2}} d x d y \tag{1.36}
\end{equation*}
$$

but we can't really do the integral in this form. However, if we define random variables $R=\sqrt{X^{2}+Y^{2}}$ and ${ }^{1} \Phi=\tan ^{-1}(Y / X)$, so that $X=R \cos \Phi$ and $Y=R \sin \Phi$, we can write the probability as

$$
\begin{equation*}
P\left(X^{2}+Y^{2}<a^{2}\right)=P(R<a)=\int_{0}^{\pi / 2} \int_{0}^{a} f_{R, \Phi}(r, \phi) d r d \phi \tag{1.38}
\end{equation*}
$$

if we have the transformed $\operatorname{pdf} f_{R, \Phi}(r, \phi)$. On the other hand, we know that we can write the volume element $d x d y=r d r d \phi$. We can get this either from geometry in this case, or more generally by differentiating the transformation

$$
\begin{equation*}
\binom{x}{y}=\binom{r \cos \phi}{r \sin \phi} \tag{1.39}
\end{equation*}
$$

${ }^{1}$ Note that we can only get away with using the arctangent $\tan ^{-1}(y / x)$ as an expression for ϕ because x and y are both positive. In general, we need to be careful; $(x, y)=(-1,-1)$ corresponds to $\phi=-3 \pi / 4$ even though $\tan ^{-1}([-1] /[-1])=\tan ^{-1}(1)=\pi / 4$ if we use the principal branch of the arctangent. For a general point in the (x, y) plane, we'd need to use the function

$$
\operatorname{atan} 2(y, x)= \begin{cases}\tan ^{-1}(y / x)-\pi & x<0 \text { and } y<0 \tag{1.37}\\ -\pi / 2 & x=0 \text { and } y<0 \\ \tan ^{-1}(y / x) & x>0 \\ \pi / 2 & x=0 \text { and } y>0 \\ \tan ^{-1}(y / x)+\pi & x<0 \text { and } y \geq 0\end{cases}
$$

to get

$$
\binom{d x}{d y}=\binom{\cos \phi d r-r \sin \phi d \phi}{\sin \phi d r+r \cos \phi d \phi}=\left(\begin{array}{cc}
\cos \phi & -r \sin \phi \tag{1.40}\\
\sin \phi & r \cos \phi
\end{array}\right)\binom{d r}{d \phi}
$$

and taking the determinant of the Jacobian matrix:

$$
\operatorname{det} \frac{\partial(x, y)}{\partial(r, \phi)}=\left|\begin{array}{cc}
\cos \phi & -r \sin \phi \tag{1.41}\\
\sin \phi & r \cos \phi
\end{array}\right|=r \cos ^{2} \phi+r \sin ^{2} \phi=r
$$

so the volume element transforms like

$$
\begin{equation*}
d x d y=\left|\operatorname{det} \frac{\partial(x, y)}{\partial(r, \phi)}\right| d r d \phi=r d r d \phi \tag{1.42}
\end{equation*}
$$

Even if we knew nothing about the transformation of random variables, we could use this to change variables in the integral (1.36) to get

$$
\begin{equation*}
\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} \frac{4}{\pi} e^{-x^{2}-y^{2}} d x d y=\int_{0}^{\pi / 2} \int_{0}^{a} \frac{4}{\pi} e^{-r^{2}} r d r d \phi \tag{1.43}
\end{equation*}
$$

If we compare the integrands of (1.43) and (1.43) we can see that the transformed pdf must be

$$
f_{R, \Phi}(r, \phi)= \begin{cases}r e^{-r^{2}} & 0<r<\infty ; 0<\phi<\pi / 2 \tag{1.44}\\ 0 & \text { otherwise }\end{cases}
$$

Incidentally, we can calculate the probability as

$$
\begin{align*}
P(R<a) & =\int_{0}^{\pi / 2} \int_{0}^{a} \frac{4}{\pi} e^{-r^{2}} r d r d \phi=\int_{0}^{a} e^{-r^{2}} 2 r d r=-\left.e^{-r^{2}}\right|_{0} ^{a} \\
& =1-e^{-a^{2}} \tag{1.45}
\end{align*}
$$

To return to the general case, we see there are basically two things to worry about: one is the Jacobian determinant relating
the volume elements in the two sets of variables, and the other is transforming the ranges of variables used to describe the event, as well as the allowed range of variables. In general terms, if \mathcal{S} is the support of the random variables X_{1} and X_{2}, i.e., the smallest region of \mathbb{R}^{2} such that $P\left[\left(X_{1}, X_{2}\right) \in \mathcal{S}\right]=1$ and \mathcal{T} is the support of Y_{1} and Y_{2}, we need a transformation of the pdf $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ defined on \mathcal{S} such that

$$
\begin{align*}
P\left[\left(X_{1}, X_{2}\right)\right. & \in A]=\iint_{A} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\iint_{B} f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}=P\left[\left(Y_{1}, Y_{2}\right) \in B\right] \tag{1.46}
\end{align*}
$$

where B is the image of A under the transformation, i.e., $\left(x_{1}, x_{2}\right) \in A$ is equivalent to $\left\{u_{1}\left(x_{1}, x_{2}\right), u_{2}\left(x_{1}, x_{2}\right)\right\} \in B$. Since a change of variables in the integral gives us

$$
\begin{align*}
& \iint_{A} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& \quad=\iint_{B} f_{X_{1}, X_{2}}\left(w_{1}\left(y_{1}, y_{2}\right), w_{2}\left(y_{1}, y_{2}\right)\right)\left|\operatorname{det} \frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(y_{1}, y_{2}\right)}\right| d y_{1} d y_{2} \tag{1.47}
\end{align*}
$$

we must have, in general,

$$
\begin{array}{r}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\left|\operatorname{det} \frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(y_{1}, y_{2}\right)}\right| f_{X_{1}, X_{2}}\left(w_{1}\left(y_{1}, y_{2}\right), w_{2}\left(y_{1}, y_{2}\right)\right) \\
\left(y_{1}, y_{2}\right) \in \mathcal{T} \quad(1 . \tag{1.48}
\end{array}
$$

which is the more careful way of writing the easier-to-remember formula we started with:

$$
\begin{equation*}
\frac{d^{2} P}{d y_{1} d y_{2}} \sim\left|\operatorname{det} \frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(y_{1}, y_{2}\right)}\right| \frac{d^{2} P}{d x_{1} d x_{2}} \tag{1.49}
\end{equation*}
$$

Tuesday 17 September 2013
 - Read Section 2.3 of Hogg

2 Conditional Distributions

2.1 Conditional Probability

Recall the definition of conditional probability: for events C_{1} and $C_{2}, P\left(C_{2} \mid C_{1}\right)$ is the probability of C_{2} given C_{1}. If we recall that $P(C)$ is the fraction of repeated experiments in which C is true, we can think of $P\left(C_{2} \mid C_{1}\right)$ as follows: restrict attention to those experiments in which C_{1} is true, and take the fraction in which C_{2} is also true. This conceptual definition leads to the mathematical definition

$$
\begin{equation*}
P\left(C_{2} \mid C_{1}\right)=\frac{P\left(C_{1} \cap C_{2}\right)}{P\left(C_{1}\right)} \tag{2.1}
\end{equation*}
$$

A consequence of this definition is the multiplication rule for probabilities,

$$
\begin{equation*}
P\left(C_{1} \cap C_{2}\right)=P\left(C_{2} \mid C_{1}\right) P\left(C_{1}\right) \tag{2.2}
\end{equation*}
$$

This means that the probability of C_{1} and C_{2} is the probability of C_{1} times the probability of C_{2} given C_{1}, which makes logical sense. In fact, since one often has easier access to conditional probabilities in the first place, you could start with the definition of $P\left(C_{2} \mid C_{1}\right)$ as the probability of C_{2} assuming C_{1}, and then use the multiplication rule (2.2) as one of the basic tenets of probability. An extreme expression of this philosophy says that all probabilities are conditional probabilities, since you have to assume something about a model to calculate them. ${ }^{2}$

[^1]One simple consequence of the multiplication rule is that we can write $P\left(C_{1} \cap C_{2}\right)$ two different ways:

$$
\begin{equation*}
P\left(C_{1} \mid C_{2}\right) P\left(C_{2}\right)=P\left(C_{1} \cap C_{2}\right)=P\left(C_{2} \mid C_{1}\right) P\left(C_{1}\right) \tag{2.3}
\end{equation*}
$$

dividing by $P\left(C_{2}\right)$ gives us Bayes's theorem

$$
\begin{equation*}
P\left(C_{1} \mid C_{2}\right)=\frac{P\left(C_{2} \mid C_{1}\right) P\left(C_{1}\right)}{P\left(C_{1}\right)} \tag{2.4}
\end{equation*}
$$

which is useful if you want to calculate conditional probabilities with one condition when you know them with another condition.

2.2 Conditional Probability Distributions

Given a pair of discrete random variables X_{1} and X_{2} with joint $\operatorname{pmf} p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$, we can define in a straightforward way the conditional probability that X_{2} takes on a value given a value for X_{1} :

$$
\begin{equation*}
p_{X_{2} \mid X_{1}}\left(x_{2}, x_{1}\right)=P\left(X_{1}=x_{1} \mid X_{2}=x_{2}\right)=\frac{p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)} \tag{2.5}
\end{equation*}
$$

where we've used the marginal pmf

$$
\begin{equation*}
p_{X_{1}}\left(x_{1}\right)=\sum_{x_{2}} p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \tag{2.6}
\end{equation*}
$$

We often write $p_{2 \mid 1}\left(x_{2} \mid x_{1}\right)$ as a shorthand for $p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)$. Note that conditional probability distributions are normalized just like ordinary ones:

$$
\begin{equation*}
\sum_{x_{2}} p_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\sum_{x_{2}} \frac{p\left(x_{1}, x_{2}\right)}{p_{1}\left(x_{1}\right)}=\frac{\sum_{x_{2}} p\left(x_{1}, x_{2}\right)}{p_{1}\left(x_{1}\right)}=\frac{p_{1}\left(x_{1}\right)}{p_{1}\left(x_{1}\right)}=1 \tag{2.7}
\end{equation*}
$$

If we have a pair of continuous random variables with joint pdf $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$, we'd like to similarly define

$$
\begin{equation*}
f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\lim _{\xi \downarrow 0} P\left(x_{1}-\xi<X_{1} \leq x_{1} \mid X_{2}=x_{2}\right) \tag{2.8}
\end{equation*}
$$

But there's a problem: since X_{2} is a continuous random variable, $P\left(X_{2}=x_{2}\right)=0$, which means we can't divide by it. So instead, we have to definite it as

$$
\begin{equation*}
f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\lim _{\substack{\xi_{1} \downarrow 0 \\ \xi_{2} \downarrow 0}}=P\left(x_{1}-\xi_{1}<X_{1} \leq x_{1} \mid x_{2}+\xi_{2}<X_{2} \leq x_{2}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)} \tag{2.9}
\end{equation*}
$$

where $f_{1}\left(x_{1}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{2}$ is the marginal pdf. Again, the conditional pdf is properly normalized:

$$
\begin{equation*}
\int_{-\infty}^{\infty} f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) d x_{2}=\frac{\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{2}}{f_{1}\left(x_{1}\right)}=\frac{f_{1}\left(x_{1}\right)}{f_{1}\left(x_{1}\right)}=1 \tag{2.10}
\end{equation*}
$$

Note that $f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)$ is a density in x_{2}, not in x_{1}. This is also important in the continuous equivalent of Bayes's theorem:

$$
\begin{equation*}
f_{1 \mid 2}\left(x_{1} \mid x_{2}\right)=\frac{f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) f_{1}\left(x_{1}\right)}{f_{2}\left(x_{2}\right)} \tag{2.11}
\end{equation*}
$$

2.2.1 Example

Consider continuous random variables X_{1} and X_{2} with joint pdf

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=6 x_{2}, \quad 0<x_{2}<x_{1}<1 \tag{2.12}
\end{equation*}
$$

The marginal pdf for x_{1} is

$$
\begin{equation*}
f_{1}\left(x_{1}\right)=\int_{0}^{x_{1}} 6 x_{2} d x_{2}=3 x_{1}^{2}, \quad 0<x_{1}<1 \tag{2.13}
\end{equation*}
$$

so the conditional pdf is

$$
\begin{equation*}
f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)}=2 \frac{x_{2}}{x_{1}^{2}}, \quad 0<x_{2}<x_{1}<1 \tag{2.14}
\end{equation*}
$$

which we can see is normalized:

$$
\begin{equation*}
\int_{-\infty}^{\infty} f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) d x_{2}=\int_{0}^{x_{1}} 2 \frac{x_{2}}{x_{1}^{2}} d x_{2}=\frac{x_{1}^{2}}{x_{1}^{2}}=1 \tag{2.15}
\end{equation*}
$$

2.2.2 Conditional Expectations

Since conditional pdfs or pmfs are just like regular probability distributions, you can also use them to define expectation values. For discrete random variables X_{1} and X_{2} we can define

$$
\begin{array}{r}
E\left(u\left(X_{2}\right) \mid X_{1}=x_{1}\right)=E\left(u\left(X_{2}\right) \mid x_{1}\right)=\sum_{x_{2}} u\left(x_{2}\right) p_{2 \mid 1}\left(x_{2} \mid x_{1}\right) \\
\text { if } \sum_{x_{2}}\left|u\left(x_{2}\right)\right| p_{2 \mid 1}\left(x_{2} \mid x_{1}\right)<\infty \tag{2.16}
\end{array}
$$

and for continuous:

$$
\begin{align*}
E\left(u\left(X_{2}\right) \mid X_{1}=x_{1}\right)= & E\left(u\left(X_{2}\right) \mid x_{1}\right)=\int_{-\infty}^{\infty} u\left(x_{2}\right) p_{2 \mid 1}\left(x_{2} \mid x_{1}\right) d x_{2} \\
& \text { if } \int_{-\infty}^{\infty}\left|u\left(x_{2}\right)\right| p_{2 \mid 1}\left(x_{2} \mid x_{1}\right) d x_{2}<\infty \tag{2.17}
\end{align*}
$$

This is still a linear operation, so

$$
\begin{equation*}
E\left(k_{1} u_{1}\left(X_{2}\right)+k_{2} u_{2}\left(X_{2}\right) \mid x_{1}\right)=k_{1} E\left(u_{1}\left(X_{2}\right) \mid x_{1}\right)+E\left(u_{2}\left(X_{2}\right) \mid x_{1}\right) \tag{2.18}
\end{equation*}
$$

We can define a conditional variance by analogy to the usual variance:

$$
\begin{equation*}
\operatorname{Var}\left(X_{2} \mid x_{1}\right)=E\left\{\left[X_{2}-E\left(X_{2} \mid x_{1}\right)\right]^{2} \mid x_{1}\right\} \tag{2.19}
\end{equation*}
$$

and since the conditional expectation value is linear, we have the usual shortcut

$$
\begin{equation*}
\operatorname{Var}\left(X_{2} \mid x_{1}\right)=E\left(X_{2}^{2} \mid x_{1}\right) 2-\left[E\left(X_{2} \mid x_{1}\right)\right]^{2} \tag{2.20}
\end{equation*}
$$

Returning to our example, in which $f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=2 \frac{x_{2}}{x_{1}^{2}}, 0<$ $x_{2}<x_{1}<1$, we have

$$
\begin{equation*}
E\left(X_{2} \mid x_{1}\right)=\int_{0}^{x_{1}} x_{2} 2 \frac{x_{2}}{x_{1}^{2}} d x_{2}=\frac{2}{3} x_{1} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(X_{2}{ }^{2} \mid x_{1}\right)=\int_{0}^{x_{1}} x_{2}^{2} 2 \frac{x_{2}}{x_{1}^{2}} d x_{2}=\frac{1}{2} x_{1}^{2} \tag{2.22}
\end{equation*}
$$

SO

$$
\begin{equation*}
\operatorname{Var}\left(X_{2} \mid x_{1}\right)=\frac{1}{2} x_{1}^{2}-\left(\frac{2}{3} x_{1}\right)^{2}=\frac{x_{1}^{2}}{18} \tag{2.23}
\end{equation*}
$$

Note that $E\left(X_{2} \mid x_{1}\right)$ is a function of x_{1} and not a random variable. But we can insert the random variable X_{1} into that function, and define a random variable $E\left(X_{2} \mid X_{1}\right)$ which is equal to $E\left(X_{2} \mid x_{1}\right)$ when $X_{1}=x_{1}$. This random variable can also be written

$$
\begin{equation*}
E\left(X_{2} \mid X_{1}\right)=\int_{-\infty}^{\infty} x_{2} f_{2 \mid 1}\left(X_{1}, x_{2}\right) d x_{2} \tag{2.24}
\end{equation*}
$$

Note that

$$
\begin{align*}
E\left[E\left(X_{2} \mid X_{1}\right)\right] & =\int_{-\infty}^{\infty} E\left(X_{2} \mid x_{1}\right) f_{1}\left(x_{1}\right) d x_{1} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{2} f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) f_{1}\left(x_{1}\right) d x_{2} d x_{1} \tag{2.25}\\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{2} f\left(x_{1}, x_{2}\right) d x_{2} d x_{1}=E\left[X_{2}\right]
\end{align*}
$$

So $E\left(X_{2} \mid X_{1}\right)$ is an estimator of $E\left(X_{2}\right)$. It can be shown that

$$
\begin{equation*}
\operatorname{Var}\left[E\left(X_{2} \mid X_{1}\right)\right] \leq \operatorname{Var}\left(X_{2}\right) \tag{2.26}
\end{equation*}
$$

so $E\left(X_{2} \mid X_{1}\right)$ is potentially a better estimator of the mean $E\left(X_{2}\right)$ than X_{2} itself is. (This isn't exactly a practical procedure,
though, since to evaluate the function $E\left(X_{2} \mid x_{1}\right)$ you need the conditional probability density $f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)$ for all possible x_{2}.)

In our specific example, since $E\left(X_{2} \mid x_{1}\right)=\frac{2}{3} x_{1}, E\left(X_{2} \mid X_{1}\right)=$ $\frac{2}{3} X_{1}$. We can work out

$$
\begin{align*}
E\left[E\left(X_{2} \mid x_{1}\right)\right] & =E\left(\frac{2}{3} X_{1}\right)=\int_{-\infty}^{\infty} \frac{2}{3} x_{1} f_{1}\left(x_{1}\right) d x_{1} \tag{2.27}\\
& =\int_{0}^{1} \frac{2}{3} x_{1}\left(3 x_{1}^{2}\right) d x_{1}=\frac{1}{2}
\end{align*}
$$

and

$$
\begin{align*}
E\left[\left\{E\left(X_{2} \mid X_{1}\right)\right\}^{2}\right] & =E\left(\frac{4}{9} X_{1}^{2}\right)=\int_{-\infty}^{\infty} \frac{4}{9} x_{1}^{2} f_{1}\left(x_{1}\right) d x_{1} \tag{2.28}\\
& =\int_{0}^{1} \frac{4}{9} x_{1}^{2}\left(3 x_{1}^{2}\right) d x_{1}=\frac{4}{15}
\end{align*}
$$

so that

$$
\begin{equation*}
\operatorname{Var}\left[E\left(X_{2} \mid X_{1}\right)\right]=\frac{4}{15}-\frac{1}{4}=\frac{16-15}{60}=\frac{1}{60} \tag{2.29}
\end{equation*}
$$

To get $E\left(X_{2}\right)$ and $\operatorname{Var}\left(X_{2}\right)$ we need the marginal pdf

$$
\begin{equation*}
f_{2}\left(x_{2}\right)=\int_{x_{2}}^{1} 6 x_{2} d x_{1}=6 x_{2}\left(1-x_{2}\right), \quad 0<x_{2}<1 \tag{2.30}
\end{equation*}
$$

from which we calculate

$$
\begin{equation*}
E\left(X_{2}\right)=\int_{0}^{1}\left(x_{2}\right) 6 x_{2}\left(1-x_{2}\right) d x_{2}=6\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{6}{12}=\frac{1}{2} \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(X_{2}{ }^{2}\right)=\int_{0}^{1}\left(x_{2}^{2}\right) 6 x_{2}\left(1-x_{2}\right) d x_{2}=6\left(\frac{1}{4}-\frac{1}{5}\right)=\frac{6}{20}=\frac{3}{10} \tag{2.32}
\end{equation*}
$$

so

$$
\begin{equation*}
\operatorname{Var}\left(X_{2}\right)=\frac{3}{10}-\frac{1}{4}=\frac{6-5}{20}=\frac{1}{20} \tag{2.33}
\end{equation*}
$$

from which we can verify that in this case

$$
\begin{equation*}
E\left(X_{2} \mid X_{1}\right)=\frac{1}{2}=E\left(X_{2}\right) \tag{2.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left[E\left(X_{2} \mid X_{1}\right)\right]=\frac{1}{60} \leq \frac{1}{20} \leq \operatorname{Var}\left(X_{2}\right) \tag{2.35}
\end{equation*}
$$

Thursday 19 September 2013

- Read Sections 2.4-2.5 of Hogg

2.3 Independence

Recall conditional distribution for discrete rvs X_{1} and X_{2}

$$
\begin{align*}
p_{2 \mid 1}\left(x_{2} \mid x_{1}\right) & =P\left(X_{1}=x_{1} \mid X_{2}=x_{2}\right) \\
& =\frac{P\left(\left[X_{1}=x_{1}\right] \cap\left[X_{2}=x_{2}\right]\right)}{P\left(X_{1}=x_{1}\right)}=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{1}\right)} \tag{2.36}
\end{align*}
$$

or for continuous rvs X_{1} and X_{2}

$$
\begin{equation*}
f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f\left(x_{1}\right)} \tag{2.37}
\end{equation*}
$$

Consider the example

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=6 x_{1} x_{2}^{2} \quad 0<x_{1}<1, \quad 0<x_{2}<1 \tag{2.38}
\end{equation*}
$$

The marginal pdf for X_{1} is

$$
\begin{equation*}
f_{1}\left(x_{1}\right)=\int_{0}^{1} 6 x_{1} x_{2}^{2} d x_{2}=2 x_{1} \tag{2.39}
\end{equation*}
$$

which makes the conditional pdf

$$
\begin{equation*}
f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\frac{6 x_{1} x_{2}^{2}}{2 x_{1}}=3 x_{2}^{2} \quad 0<x_{1}<1, \quad 0<x_{2}<1 \tag{2.40}
\end{equation*}
$$

Note that in this case $f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)$ doesn't actually depend on x_{1}, as long as x_{1} is in the support of the random variable X_{1}. This situation is called independence. In fact, it's easy to show that in this situation $f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=f_{2}\left(x_{2}\right)$, i.e., the conditional pdf for X_{2} given any possible value of X_{1} is the marginal pdf for X_{2} :

$$
\begin{align*}
f_{2}\left(x_{2}\right) & =\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1}=\int_{-\infty}^{\infty} f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) f_{1}\left(x_{1}\right) d x_{1} \\
& =f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) \int_{-\infty}^{\infty} f_{1}\left(x_{1}\right) d x_{1}=f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) \quad\left(X_{1} \& X_{2} \text { indep. }\right) \tag{2.41}
\end{align*}
$$

where we can pull $f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)$ out of the x_{1} integral because it doesn't actually depend on x_{1}, and we use the fact that the marginal pdf $f_{1}\left(x_{1}\right)$ is normalized. We thus have the definition
$\left(X_{1} \& X_{2}\right.$ independent $) \equiv\left(f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=f_{2}\left(x_{2}\right)\right.$ for all $\left.\left(x_{1}, x_{2}\right) \in \mathcal{S}\right)$
This is not the most symmetric definition, and it's not immediately obvious that $f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=f_{2}\left(x_{2}\right)$ implies $f_{1 \mid 2}\left(x_{1} \mid x_{2}\right)=$ $f_{1}\left(x_{1}\right)$. But it does because of the following result
$\left(X_{1} \& X_{2}\right.$ independent) iff $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$ for all $\left(x_{1}, x_{2}\right)$
(We don't need to specify $\left(x_{1}, x_{2}\right) \in \mathcal{S}$ because we can think of $f_{1}\left(x_{1}\right)$ and $f_{2}\left(x_{2}\right)$ as being equal to zero if their arguments are outside their respective support spaces.) It's easy enough to demonstrate 2.43). If we assume $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$, then $f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\frac{f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)}{f_{1}\left(x_{1}\right)}=f_{2}\left(x_{2}\right)$ as long as $f_{1}\left(x_{1}\right) \neq 0$. Conversely, if we assume $f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=f_{2}\left(x_{2}\right)$, then $f\left(x_{1}, x_{2}\right)=$ $f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) f_{1}\left(x_{1}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$.

If X_{1} and X_{2} are not independent, we call them dependent random variables. We can consider a couple of examples of dependent rvs:

2.3.1 Dependent rv example \#1

First, let

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1}+x_{2} & 0<x_{1}<1,0<x_{2}<1 \tag{2.44}\\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\begin{equation*}
f_{1}\left(x_{1}\right)=\int_{0}^{1}\left(x_{1}+x_{2}\right) d x_{2}=x_{1}+\frac{1}{2} \quad 0<x_{1}<1 \tag{2.45}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\frac{x_{1}+x_{2}}{x_{1}+\frac{1}{2}} \quad 0<x_{1}<1,0<x_{2}<1 \tag{2.46}
\end{equation*}
$$

which does depend on x_{1}, so X_{1} and X_{2} are dependent.

2.3.2 Dependent rv example \#1

Second, return to our example from Tuesday, where

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=6 x_{2}, \quad 0<x_{2}<x_{1}<1 \tag{2.47}
\end{equation*}
$$

and we saw

$$
\begin{equation*}
f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=2 \frac{x_{2}}{x_{1}^{2}}, \quad 0<x_{2}<x_{1}<1 \tag{2.48}
\end{equation*}
$$

again, this depends on x_{1}, so X_{1} and X_{2} are dependent.

2.3.3 Factoring the joint pdf

We don't have to calculate the conditional pdf to tell whether random variables are dependent or independent. We can show that
$\left(X_{1} \& X_{2}\right.$ independent) iff $f\left(x_{1}, x_{2}\right)=g\left(x_{1}\right) h\left(x_{2}\right)$ for all $\left(x_{1}, x_{2}\right)$
for some functions g and h. The "only if" part is trivial; choose $g\left(x_{1}\right)=f_{1}\left(x_{1}\right)$ and $h\left(x_{2}\right)=f_{2}\left(x_{2}\right)$. We can show the "if" part by assuming a factored form and working out

$$
\begin{equation*}
f_{1}\left(x_{1}\right)=\int_{-\infty}^{\infty} g\left(x_{1}\right) h\left(x_{2}\right) d x_{2}=g\left(x_{1}\right) \int_{-\infty}^{\infty} h\left(x_{2}\right) d x_{2} \tag{2.50}
\end{equation*}
$$

The integral $\int_{-\infty}^{\infty} h\left(x_{2}\right) d x_{2}$ is just a constant, which we can call c, so we have $g\left(x_{1}\right)=f_{1}\left(x_{1}\right) / c$ and $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) h\left(x_{2}\right) / c$. Then we take

$$
\begin{equation*}
f_{2}\left(x_{2}\right)=\frac{h\left(x_{2}\right)}{c} \int_{-\infty}^{\infty} f_{1}\left(x_{1}\right) d x_{1}=\frac{h\left(x_{2}\right)}{c} \tag{2.51}
\end{equation*}
$$

which means that indeed $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$.
Our two examples show ways in which the joint pdf can fail to factor. In 2.44), $x_{1}+x_{2}$ can obviously not be written as a product of $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$. In (2.47), it's a little trickier, since it seems like we could write $6 x_{1}=\left(6 x_{1}\right)(1)$. But the problem is the support of (2.47). If we took, for example,

$$
g\left(x_{1}\right)= \begin{cases}6 x_{1} & 0<x_{1}<1 \tag{2.52}\\ 0 & \text { otherwise }\end{cases}
$$

and

$$
h\left(x_{2}\right)= \begin{cases}1 & 0<x_{2}<1 \tag{2.53}\\ 0 & \text { otherwise }\end{cases}
$$

we'd end up with

$$
g\left(x_{1}\right) h\left(x_{2}\right)= \begin{cases}6 x_{1} & 0<x_{1}<1,0<x_{2}<1 \tag{2.54}\\ 0 & \text { otherwise }\end{cases}
$$

which is not the same as the $f\left(x_{1}, x_{2}\right)$ given in (2.47). In general, for the factorization to work, the support of X_{1} and X_{2} has to be a product space, i.e., the intersection of a range of possible x_{1} values with no reference to x_{2} and a range of possible x_{2} values with no reference to x_{1}. Some examples of product spaces are

- $0<x_{1}<1,0<x_{2}<1$
- $-1<x_{1}<1,0<x_{2}<2$
- $0<x_{1}<\infty,-\infty<x_{2}<\infty$
- $0<x_{1}<\infty, 0<x_{2}<1$
some examples of non-product spaces are
- $0<x_{2}<x_{1}<1$
- $0<x_{1}<x_{2}<\infty$
- $x_{1}^{2}+x_{2}^{2}<1$

2.3.4 Expectation Values

Finally we consider an important result related to expectation values. Let X_{1} and X_{2} be independent random variables. Then the expectation value of the product of a function of each random variables is the product of their expectation values:

$$
\begin{gather*}
E\left[u_{1}\left(X_{1}\right) u_{2}\left(X_{2}\right)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{1}\left(x_{1}\right) u_{2}\left(x_{2}\right) f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) d x_{1} d x_{2} \\
=\left(\int_{-\infty}^{\infty} u_{1}\left(x_{1}\right) f_{1}\left(x_{1}\right) d x_{1}\right)\left(\int_{-\infty}^{\infty} u_{2}\left(x_{2}\right) f_{2}\left(x_{2}\right) d x_{2}\right) \\
=E\left[u_{1}\left(X_{1}\right)\right] E\left[u_{2}\left(X_{2}\right)\right] \quad\left(X_{1} \& X_{2} \text { indep. }\right) \tag{2.55}
\end{gather*}
$$

In particular, the joint mgf is such an expectation value, so

$$
\begin{align*}
M\left(t_{1}, t_{2}\right) & =E\left(e^{t_{1} X_{1}+t_{2} X_{2}}\right)=E\left(e^{t_{1} X_{1}}\right) E\left(e^{t_{2} X_{2}}\right)=M_{1}\left(t_{1}\right) M_{2}\left(t_{2}\right) \\
& =M\left(t_{1}, 0\right) M\left(0, t_{2}\right) \quad\left(X_{1} \& X_{2} \text { indep. }\right) \tag{2.56}
\end{align*}
$$

It takes a little more work, but you can also prove the converse (see Hogg for details) so

$$
\begin{equation*}
\left(X_{1} \& X_{2} \text { independent }\right) \text { iff } M\left(t_{1}, t_{2}\right)=M\left(t_{1}, 0\right) M\left(0, t_{2}\right) \tag{2.57}
\end{equation*}
$$

You showed on the homework that in a particular case $M\left(t_{1}, 0\right) M\left(0, t_{2}\right) \neq M\left(t_{1}, t_{2}\right)$; in that case the random variables were dependent because their support was not a product space.

3 Covariance and Correlation

Recall the definitions of the means

$$
\begin{equation*}
\mu_{X}=E(X) \quad \text { and } \quad \mu_{Y}=E(Y) \tag{3.1}
\end{equation*}
$$

and variances

$$
\begin{align*}
& \sigma_{X}^{2}=\operatorname{Var}(X)=E\left(\left[X-\mu_{X}\right]^{2}\right) \tag{3.2a}\\
& \sigma_{Y}^{2}=\operatorname{Var}(Y)=E\left(\left[Y-\mu_{Y}\right]^{2}\right) \tag{3.2b}
\end{align*}
$$

We can define the covariance

$$
\begin{equation*}
\operatorname{Cov}(X, Y)=E\left(\left[X-\mu_{X}\right]\left[Y-\mu_{Y}\right]\right) \tag{3.3}
\end{equation*}
$$

Dimensionally, μ_{X} and σ_{X} have units of X, μ_{Y} and σ_{Y} have units of Y, and the covariance $\operatorname{Cov}(X, Y)$ has units of $X Y$. It's useful to define a dimensionless quantity called the Correlation Coëfficient:

$$
\begin{equation*}
\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} \tag{3.4}
\end{equation*}
$$

On the homework you will show that $-1 \leq \rho \leq 1$.
One important result about independent random variables is that they are uncorrelated. If X and Y are independent, then

$$
\begin{gather*}
\operatorname{Cov}(X, Y)=E\left(\left[X-\mu_{X}\right]\left[Y-\mu_{Y}\right]\right)=E\left(X-\mu_{X}\right) E\left(Y-\mu_{Y}\right) \\
=\left(\mu_{X}-\mu_{X}\right)\left(\mu_{Y}-\mu_{Y}\right)=0 \quad(X \& Y \text { indep. }) \tag{3.5}
\end{gather*}
$$

On the other hand, the converse is not true: it is still possible for the covariance of dependent variables to be zero.

Tuesday 24 September 2013
 - Read Section 2.6 of Hogg

4 Generalization to Several RVs

Guest lecture from Dr. James Marengo. Note: this week's material will not be included on Prelim Exam One.

Thursday 26 September 2013

- Read Sections 2.7-2.8 of Hogg

4.1 Transformations of Several RVs

Guest lecture from Dr. James Marengo. Note: this week's material will not be included on Prelim Exam One.

Tuesday 1 October 2013
 - Review for Prelim Exam One

The exam covers materials from the first four weeks of the term, i.e., Hogg sections 1.5-1.10 and 2.1-2.5, and problem sets 1-4.

Thursday 3 October 2013 - First Prelim Exam

[^0]: *Copyright 2013, John T. Whelan, and all that

[^1]: ${ }^{2}$ See E. T. Jaynes. Probability Theory: The Logic of Science for this approach.

