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0 Preliminaries

0.1 Administrata

• Introductions!

• Mathematical Diagnostic (not graded; intended as a peda-
gogical guide for me).

• Syllabus

• Instructor’s name (Whelan) rhymes with “wailin’”.

• Text: Hogg, McKean, and Craig, Introduction to Mathe-
matical Statistics, 7th edition.

• Other useful books:
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– Casella and Berger, Statistical Inference, 2nd edition.
This is a standard first-year graduate text in statis-
tics. It covers roughly the same material, but with
a little more sophistication (more possible pathologies
are mentioned) but also more of a practical philosophy.

– Jaynes, Probability Theory: the Logic of Science. This
is a sort of Bayesian manifesto and as such doesn’t
overlap much with the traditional approach, but it’s
got a lot of interesting bits in it, such as a demon-
stration that you can derive probability as an obvious
extension of logic.

• Course website: http://ccrgpages.rit.edu/~whelan/

STAT-405/

– Will contain links to notes and problem sets; course
calendar is probably the most useful.

– Note that due to network issues, we’ve had to replace
ccrg with ccrgpages in the address.

– Course calendar: tentative timetable for course.

• Course work:

– Please read the relevant sections of the textbook before
class so as to be prepared for class discussions.

– There will be quasi-weekly homeworks. Collaboration
is allowed an encouraged, but please turn in your own
work, as obviously identical homeworks may not re-
ceive credit.

– There will be two prelim exams, in class, and one cu-
mulative final exam.

• Grading:

5% Class Participation

20% Problem Sets

20% First Prelim Exam

20% Second Prelim Exam

35% Final Exam

You’ll get a separate grade on the “quality point” scale (e.g.,
2.5–3.5 is the B range) for each of these five components;
course grade is weighted average.

0.2 Outline

1. Random Variables (Chapter One)

2. Multivariate Distributions (Chapter Two)

3. Specific probability distributions (binomial, Poisson, nor-
mal, χ2 (Chapter Three)

4. Statistical Inference (Chapter Four)

5. Central limit theorem (Chapter Five)

Warning: the material in this class is rather advanced. Please
make sure you’re familiar with what you covered in Applied
Statistics or Engineering Statistics, as well as multi-variable cal-
culus.

1 Review of Probability Theory

Sections 1.1-1.4 of Hogg build up probability theory in a some-
what formal and axiomatic way, and in particular they develop
the formalism of set theory which is used to combine events.
Since you should already be familiar with these principles from
Probability or Applied Statistics, and since most of this course
is concerned with random variables rather than abstract prob-
ability, we’ll just take a quick refresher, and make a few points
by way of perspective.
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1.1 Set Theory and Logic

At its heart, probability theory applies to each “event” a real
number between zero and one. There are two different, math-
ematically equivalent, ways to understand what’s meant by
“event”: one based on set theory and the other based on logic.
Mathematics books tend to define things in the set theory way,
in which there is a sample space, C, consisting of all of the
possible outcomes of an experiment, with an individual out-
come labelled c, so that c ∈ C. Then an event C is some set of
outcomes, i.e., a subset of C, C ⊆ C.

In the application of probability theory, though, it’s easier to
think of events as being logical propositions, statements about
the outcome of an experiment which could be true or false. The
idea connecting the two is that for each outcome of the experi-
ment, a given statement is either true or false. The set associated
with an event C is the set of all outcomes in which the state-
ment in question is true. (We’ll be making these statements
in the context of a repeatable experiment, but in fact the en-
tire mathematical formalism can be extended to any true/false
statements that can be made about the world.)

There are basic operations in set theory used to combine
events into other events, and each one of them has an analogue
in the formalism of logic:

• The complement Cc of the event C is the set of all out-
comes which are not in C. In terms of logic, this is “not
C”, written as ¬C, C ′ or C. It is a statement which is true
if C is false and false if C is true.

• The union C1 ∪ C2 is the set of all outcomes which are in
C1 or C2, or both. In logic, this is “C1 or C2” (where we
mean an “inclusive or”), written C1∨C2, a statement which
is true if either C1 or C2 or both are true.

• The intersection C1 ∩ C2 is the set of all outcomes which

are in both C1 and C2. In logic, this is “C1 and C2”, written
C1 ∧ C2, a statement which is true if both C1 and C2 are
true.

We can connect the two ideas using a “truth table”

Outcome C1 C2 C1 ∧ C2 C1 ∨ C2 ¬C1

C1 ∩ C2 T T T T F
C1 ∩ Cc

2 T F F T F
Cc

1 ∩ C2 F T F T T
Cc

1 ∩ Cc
2 F F F F T

In set theory, two events are equal if the sets of outcomes they
contain are identical; in logic, this corresponds to one event
being true whenever the other is true and false whenever the
other is false. Finally, it’s useful to define the null event ∅ = Cc
which contains no outcomes and therefore is always false.

1.2 Defining and Assigning Probabilities

Mathematically speaking, probability is a number between 0
ans 1 which is assigned to each event. I.e., the event C has
probability P (C). If we think about the logical definition of
events, then we have

• P (C) = 1 means the statement corresponding to C is defi-
nitely true.

• P (C) = 0 means the statement corresponding to C is defi-
nitely false.

• 0 < P (C) < 1 means the statement corresponding to C
could be true or false.

The standard numerical interpretation of the probability P (C) is
in terms of a repeatable experiment with some random element.
Imagine that we repeat the same experiment over and over again
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many times under identical conditions. In each iteration of the
experiment (each game of craps, sequence of coin flips, opinion
survey, etc), a given outcome or event will represent a statement
that is either true or false. Over the long run, the fraction of
experiments in which the statement is true will be approximately
given by the probability of the corresponding outcome or event.
If we write the number of repetitions of the experiment as N ,
and the number of experiments out of those N in which C is
true as #C, then

lim
N→∞

#C

N
= P (C) (1.1)

You can test this proposition on the optional numerical exer-
cise on this week’s problem set. This interpretation of proba-
bility is sometimes called the “frequentist” interpretation, since
it involves the relative frequency of outcomes in repeated ex-
periements. It’s actually a somewhat more limited interpreta-
tion than the “Bayesian” interpretation, in which the probability
of an event corresponds to a quantitative degree of certainty that
the corresponding statement is true. (Devore somewhat pejora-
tively calls this “subjective probability”.) These finer points are
beyond the scope of this course, but if you’re interested, you may
want to look up e.g., Probability Theory: The Logic of Science
by E. T. Jaynes.

1.3 Basic Rules of Probability

It’s a standard approach to develop a formal theory of prob-
ability starting from a few axioms, and derives other sensible
results from those. This is an interesting intellectual exercise,
but for our purposes, it’s enough to note certain simple prop-
erties which make sense for our understanding of probability as
the likelihood that a statement is true:

1. For any event C, 0 ≤ P (C) ≤ 1

2. P (C) = 1 and P (∅) = 0 (something always happens)

3. P (Cc) = 1−P (C) (the probability that a statement is false
is one minus the probability that it’s true.

4. If C1 and C2 are disjoint events, P (C1∪C2) = P (C1)+P (C2)

One useful non-trivial result concerns the probability of the
union of any two events. Since C1∪C2 = (C1∩Cc

2)∪ (C1∩C2)∪
(Cc

1 ∩ C2), the union of three disjoint events,

P (C1 ∪ C2) = P (C1 ∩ Cc
2) + P (C1 ∩ C2) + P (Cc

1 ∩ C2) (1.2)

On the other hand, C1 = (C1 ∩ Cc
2) ∪ (C1 ∩ C2) and C2 =

(C1 ∩ C2) ∪ (Cc
1 ∩ C2), so

P (C1) = P (C1 ∩ Cc
2) + P (C1 ∩ C2) (1.3a)

P (C2) = P (C1 ∩ C2) + P (Cc
1 ∩ C2) (1.3b)

which means that

P (C1) + P (C2) = P (C1 ∩ Cc
2) + 2P (C1 ∩ C2) + P (Cc

1 ∩ C2)

= P (C1 ∪ C2) + P (C1 ∩ C2)

(1.4)

so
P (C1 ∪ C2) = P (C1) + P (C2)− P (C1 ∩ C2) (1.5)

Another important concept is conditional probability, but
we’ll postpone consideration of this until we talk about con-
ditional distributions for random variables.

2 Random Variables

In this course we’ll primarily be interested in random variables.
A random variable (or rv for short) X assigns exactly one value
X(c) to each outcome c in the sample space C. Thus the proba-
bility function, which assigns a number between 0 and 1 to each
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event C ∈ B, which is a set of outcomes, can be used to assign
a probability to any set of numbers D, i.e.,

PX(D) = P [X ∈D] = P [{c : X(c) ∈D}] (2.1)

It would be kind of unwieldy if, for each random variable, we
had to write down the general function which told us the prob-
ability of any set of values. Sometimes we can just write down
the probability for each possible value the rv can take on; this
function pX(x) = P [X = x] is called the probability mass
function (pmf). To be acceptable as a pmf, a function has to
satisfy two conditions:

1. 0 ≤ pX(x) ≤ 1 (since pX(x) = P [X = x] is a probability)

2.
∑

x∈D pX(x) = 1 where D is the set of allowable values of
X. This condition is known as normalization

As an example, consider a simple random variable. Flip
three coins and count the number of heads. In this case,
there are only eight outcomes in the sample space: C =
{HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}. If the
coin is fair, the probability of each is 1

8
= 0.125. We can then

count the heads in each outcome, defining the random variable
X using the function P (HHH) = 0.125, P (HHT ) = 0.125,
P (HTH) = 0.125, etc, so that e.g., PX({1}) = P [{c : X(c) ∈
{HTT, THT,HTT}]:

pX(x) ≡ P (X = x) =





0.125 x = 0

0.375 x = 1

0.375 x = 2

0.125 x = 3

0 otherwise

(2.2)

We can plot this:

0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

p X
(x
)

pmf for # of heads on 3 fair coin tosses

As we’ll see, it’s not always possible to define a probability mass
function, so it’s useful to define a more generally applicable con-
struct, the cumulative distribution function

FX(x) ≡ P (X ≤ x) =





0 x < 0

0.125 0 ≤ x < 1

0.5 1 ≤ x < 2

0.875 2 ≤ x < 3

1 3 ≤ x

(2.3)

which looks like this
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Note that the cdf FX(x) is not continuous, but it is right con-
tinuous, i.e., limx↓x0 FX(x) = FX(x0).

Thursday 29 August 2013
– Read Sections 1.6-1.7 of Hogg

2.1 The cumulative distribution function

Recall that last time, we defined the cumulative distribution
function

FX(x) = P [X ≤ x] (2.4)

Note that x is an ordinary variable, and is used to refer to a
value X can take on. FX(x) need not be a continuous function,
but it is always right continuous, i.e., limx↓x0 FX(x) = FX(x0).
This is one of the basic properties that FX(x) always has:

1. FX(x) is a non-decreasing function, i.e., for any a and b
with a < b, FX(a) ≤ FX(b)

2. FX(−∞) = limx→−∞ FX(x) = 0.

3. FX(∞) = limx→∞ FX(x) = 1.

4. FX(x) is right continuous, i.e., limx↓x0 FX(x) = FX(x0).

We can use the cdf to calculate the probability of any set of
values, including an interval, that X can take on. First, for a
half-open interval, we note that, if a < b, we have X ≤ b =
[X ≤ a] ∪ [a < X ≤ b] and so

F (b) = P (X ≤ b) = P (X ≤ a) + P (a < X ≤ b)
= F (a) + P (a < X ≤ b) (2.5)

and
P (a < X ≤ b) = F (b)− F (a) (2.6)

On the other hand, the probability of a single value a is given
by the size of the discontinuity in FX(x) at a:

P (X = a) = lim
x↑a

P (x < X ≤ a) = lim
x↑a

[FX(x)− FX(a)]

= FX(a)− lim
x↑a

FX(a) = FX(a)− FX(a−)
(2.7)

So the cdf of a random variable is equivalent to the probability
function associated with it, at least if the events we’re allowed
to consider are limited to sets and intervals of values.

If the cdf of a random variable is continuous, we call it a
continuous random variable. If it is constant aside from
discontinuities, we call it a discrete random variable. We’ll
consider some specific examples to see how each of these can be
treated specially:

As an example of a continuous random variable, pick a point
at random on the sphere, and note its colatitude. (This is the
angle down from the north pole, which American mathemati-
cians refer to as φ, and everyone else refers to as θ. We’ll call
it the random variable X.) Now we cannot say the probability
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that X is exactly 0, or π/2, or some single value, but we can
say that the probability of being within some angle x of the
north pole is proportional to the area within polar cap down to
colatitude x, This means that

FX(x) =





0 x < 0
1
2
[1− cos(x)] 0 ≤ x < π

1 π ≤ x

(2.8)

0 π/2 π

x

0.0

0.5

1.0

F
X
(x
)

cdf for colatitude on sphere

Note that in this case the cdf is continuous. By (2.7), this means
that the probability of X taking on any one value like 0 or π/4
is zero. But of course we have a non-zero probability of X lying
within an interval,

P (a < X < b) = P (a < X ≤ b) = FX(b)− FX(a) (2.9)

Since FX(x) is continuous, we can define its derivative fX(x) =
F ′X(x), which is known as the probability density function

for the random variable X. The fundamental theorem of calcu-
lus then tells us

P (a < X < b) = FX(b)− FX(a) =

∫ b

a

fX(x) dx (2.10)

In this case,

fX(x) =

{
1
2

sin(x) 0 < x < π

0 otherwise
(2.11)

which looks like

0 π/2 π

x

0.0

0.1

0.2

0.3

0.4

0.5

f X
(x
)

pdf for colatitude on sphere

Note that some rvs are neither continuous nor discrete. Con-
sider the case where the pressure in a chamber is a random
variable equally likely to be anywhere between 0 and 5 atm, but
we measure it with a gauge which rails at 4 atm. Then the cdf
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of the measurement X is

FX(x) =





0 x < 0

0.8x 0 < x ≤ 4 atm

1 4 atm ≤ x

(2.12)

which has a discontinuity at x = 4 atm but is not constant for
0 < x < 4 atm:

0 1 2 3 4
x (atm)

0.0

0.2

0.4

0.6

0.8

1.0

F
X
(x
)

cdf for railed barometer

Incidentally, you can still write down a probability density func-
tion for this random variable in terms of the dirac delta function
δ(x− x0) which is defined by

∫ b
a
g(x)δ(x− x0) dx = g(x0) when

a < x0 < b and g(x) is sufficiently well-behaved at x = x0:

fX(x) =

{
0.8x+ 0.2δ(x− 4 atm) 0 ≤ x ≤ 4 atm

0 otherwise
(2.13)

2.2 Transformations

Suppose you have a random variable X, whose properties are
described by a cdf FX(x) and possibly either a pmf pX(x) or
a pdf fX(x). An important question is, if you define a new rv
Y = g(X) using a function g(x), what is its cdf FY (y) and, if
applicable, pmf pY (y) or pdf fY (y). We assume for simplicity
that h is single-valued and invertable, so that we can define a
function x = g−1(y).

2.2.1 Transformation of the cdf and pmf

Both the cumulative distribution function FX(x) = P (X ≤ x)
and the probability mass function pX(x) = P (X = x) are prob-
abilities, so their transformation is pretty straightforward. For
a discrete rv, the pmf transforms as follows:

pY (y) = P (Y = y) = P (g(X) = y) = P (X = g−1(y))

= pX(g−1(y))
(2.14)

Things are a little more complicated for the cdf, since we have
to deal with the inequality g(X) ≤ y. If g(x) is an invertable
function, it must be either monotonically increasing or mono-
tonically decreasing. If it’s monotonically increasing, g(X) ≤ y
is equivalent to X ≤ g−1(y), and

FY (y) = P (Y ≤ y) = P (g(X)≤ y) = P (X ≤ g−1(y))

= FX(g−1(y))
(2.15)

If it’s monotonically decreasing, g(X) ≤ y is equivalent to X ≥
g−1(y), and

FY (y) = P (Y ≤ y) = P (g(X)≤ y) = P (X ≥ g−1(y))

= 1− P (X < g−1(y)) = 1− lim
x↑g−1(y)

FX(x) (2.16)

If X is a continuous rv, this becomes FY (y) = 1− FX(g−1(y)).
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2.2.2 Transformation of the pdf

Things become a little more interesting if X is a continuous
random variable described by a pdf fX(x). This is because the
pdf is not a probability but a probability density, having been
defined as the derivative of the cdf. An easy way to remember
the answer (which we’ll derive carefully in a minute) is to think
of the densities as fX(x) ∼ dP

dx
and fY (y) ∼ dP

dy
. Then the chain

rule looks something like this:

dP

dy
∼ dP

dx

dx

dy
∼ dP/dx

dy/dx
(2.17)

The one catch is that the densities fX(x) and fY (y) are both
supposed to be positive, so the factor relating them has to be
the absolute value of the derivative of the transformation,

∣∣ dy
dx

∣∣.
Again, we have to look separately at the case where the trans-

formation function g(x) is monotonically increasing and mono-
tonically decreasing. If it’s monotonically increasing (so that
g′(x) > 0 over the region of interest), we can use the chain rule
to show

fY (y) = F ′Y (y) =
d

dy
FX(g−1(y))

= F ′X(g−1(y))
d

dy
(g−1(y)) =

fX(g−1(y))

g′(g−1(y))

(2.18)

if it’s monotonically decreasing (so that g′(x) < 0), the calcula-
tion becomes

fY (y) = F ′Y (y) =
d

dy
[1− FX(g−1(y))]

= −F ′X(g−1(y))
d

dy
(g−1(y)) =

fX(g−1(y))

−g′(g−1(y))

(2.19)

We can summarize (2.18) and (2.19) with the single equation

fY (y) =
fX(g−1(y))

|g′(g−1(y))| = fX(g−1(y))

∣∣∣∣
dg−1(y)

dy

∣∣∣∣ (2.20)

This is the more precise version of the expression for which (2.17)
is a good mnemonic.

To return to our colatitude example, where X has the pdf

fX(x) =

{
1
2

sin(x) 0 < x < π

0 otherwise
(2.21)

consider the transformation Y = g(X) = cosX. The derivative
is g′(x) = − sinx which is negative over the interval of interest
0 < x < π. Note that if 0 < x < π, then −1 ≤ g(x) < 1, so the
transformed pdf vanishes unless −1 < y < 1, in which case it is

1

2

sin(cos−1(y))

|− sin(cos−1(y))| =
1

2
(2.22)

I.e.,

fY (y) =

{
1
2
−1 < y < 1

0 otherwise
(2.23)

The fact that this happens to be a uniform distribution has use-
ful consequences. It means we can generate a random point on
the sphere by drawing the longitude from a uniform distribu-
tion between 0 and 2π and the cosine of the colatitude from a
uniform distribution between −1 and 1.

Tuesday 3 September 2013
– Read Sections 1.8-1.9 of Hogg

3 Expectation Values

Given a random variable X, we define the expectation value of
any function g(X) as a weighted average of the possible values of
g(X), weighted by their probabilities. There are two analogous
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expressions, one for in terms of the pmf p(x) if X is discrete and
one in terms of the pdf f(x) if X is a continuous rv.1

E(g(X)) =
∑

x

g(x)p(x) if
∑

x

|g(x)| p(x) <∞ (3.1a)

E(g(X)) =

∫ ∞

−∞
g(x)f(x) dx if

∫ ∞

−∞
|g(x)| f(x) dx <∞

(3.1b)

If the sum
∑

x |g(x)| p(x) or integral
∫∞
−∞ |g(x)| f(x) dx, which

would define E(|g(X)|), diverges, we say the expectation value
does not exist. (This is probably something you didn’t worry
about introductory probability and statistics classes.) To see an
example of what can go wrong, consider the Cauchy distribution,
which you derived on the homework:

f(x) =
1

π

1

1 + x2
(3.2)

The trigonometric substitution x = tan θ can be used to show
that

∫∞
−∞ f(x) dx = 1, however, the expectation value E(X) does

not exist, which we see by evaluating
∫ ∞

−∞
|x| f(x) dx =

1

π

∫ ∞

−∞

|x|
1 + x2

dx

=
2

π

∫ ∞

0

x

1 + x2
dx = lim

R→∞

2

π

∫ R

0

x

1 + x2
dx

= lim
R→∞

1

π
ln(1 + x2)

∣∣∣∣
R

0

= lim
R→∞

1

π
ln(1 +R2) =∞

(3.3)

You might think that because the Cauchy pdf f(x) is an odd
function, the integral of xf(x) should be zero, because the con-
tributions from positive and negative x cancel out, but that only

1We’ll drop the subscript X on the pmf, pdf, etc if it’s obvious which
random variable we’re talking about.

works if you take limits of the integral to −∞ and∞ at the same
rate.

To give an example where things work out, consider the uni-
form distribution f(x) = 1

2
, −1 < x < 1, and evaluate

E(X2) =

∫ 1

−1
x2f(x) dx =

∫ 1

−1

x2

2
dx =

x3

6

∣∣∣∣
1

−1
=

1− (−1)

6
=

1

3
(3.4)

Note that because the expectation value is defined using a
sum or integral, it is a linear operation:

E[k1g1(X) + k2g2(X)] = k1E[g1(X)] + k2E[g2(X)] (3.5)

3.1 Mean, Variance and Moments

The expectation value E(X) is also known as the mean of the
probability distribution and written µX = E(X). It is a special
case of E(Xm), which we call the mth moment of X. A related
quantity is the mth central moment E([X−µX ]m); the second
central moment is the variance

Var(X) = E([X − µX ]2) (3.6)

The variance is not a linear operation, but the fact that the
expectation value is means that we can write

Var(X) = E(X2 − 2µXX − µ2
X) = E(X2)− 2µE(X) + µ2

X

= E(X2)− µ2
X

(3.7)

so that the variance of a random variable is the second moment
minus the square of the first moment.

Note that

Var(aX + b) = E({[aX + b]− [aµX + b]}2) = E([aX − aµX ]2)

= E(a2[X − µX ]2) = a2E([X − µX ]2) = a2 Var(X) .

(3.8)
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3.2 The Moment Generating Function

We can calculate each moment of a random variable with an
appropriate sum or integral of Xm, but there’s a handy trick
that lets us effectively calculate them all at once. Recall the
McLaurin series

f(α) = eα =
∞∑

m=0

αm

m!
; (3.9)

if we write the random variable

etX =
∞∑

m=0

tm

m!
Xm (3.10)

then its expectation value defines something called the moment
generating function (mgf)

MX(t) = E
(
etX
)

=
∞∑

m=0

tm

m!
E (Xm) (3.11)

As usual, we will drop the subscript X as long as it’s apparent
which random variable we’re talking about. Considered as a
function of t, we can think of this in terms of a McLaurin se-
ries whose mth coëfficient M (m)(0)/m! equals the mth moment
divided by m!. I.e., if we take the mth derivative of the mgf,
evaluated at t = 0, we get the mth moment:

M (m)(0) = E (Xm) (3.12)

For this to work, the mgf has to be defined in a neighborhood
of the origin, i.e., for −h < t < h where h > 0 is some positive
number. Note that the “zeroth moment” of a distribution is
E(1) = 1, so any mgf must have M(0) = 1

Moment generating functions can be used to generate mo-
ments, but they turn out to have lots of other useful properties
which we will learn as the semester goes on. It is often easier

to learn about a random variables via their mgfs than to work
with the pdf, pmf or cdf directly.

As an example of an mgf, consider a uniformly distributed
random variable with pdf

f(x) =

{
1
b−a a < x < b

0 otherwise
(3.13)

Its mgf is

M(t) =

∫ ∞

−∞
etx f(x) dx =

1

b− a

∫ b

a

etx dx =
1

b− a
etx

t

∣∣∣∣
b

a

=
etb − eta
(b− a)t

(3.14)

Actually, note that that only makes sense for t 6= 0, but we can
show, using l’Hôpital’s rule,

lim
t→0

etb − eta
(b− a)t

= lim
t→0

betb − aeta
(b− a)

= 1 (3.15)

so the mgf

M(t) =

{
etb−eta
(b−a)t t 6= 0

1 t = 0
(3.16)

We can find the various moments by differentiating the t 6= 0
expression and then using l’Hôpital’s rule to take the limit as
t→ 0.

As an example of a discrete rv, recall the pmf for the number
of heads on three coin flips:

p(x) =





1/8 x = 0

3/8 x = 1

3/8 x = 2

1/8 x = 3

0 otherwise

(3.17)
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Its mgf is

M(t) =
3∑

x=0

etxp(x) =
1 + 3et + 3e2t + e3t

8
=

(1 + et)3

8

=

(
1 + et

2

)3
(3.18)

Since

M ′(t) =
3

2
et
(

1 + et

2

)2

(3.19)

and

M ′′(t) =
3

2
et
(

1 + et

2

)2

+
3

2
e2t
(

1 + et

2

)
(3.20)

we can show that the mean is

µ = E(X) = M ′(0) =
3

2
(3.21)

the second moment is

E(X2) = M ′′(0) =
3

2
+

3

2
= 3 (3.22)

and the variance is

σ2 = E(X2)− µ2 = 3− 9

4
=

12− 9

4
=

3

4
(3.23)

Finally, if we consider our random colatitude example,

f(x) =

{
1
2

sin(x) 0 < x < π

0 otherwise
(3.24)

the mgf is

M(t) =

∫ π

0

1

2
etx sin(x) dx (3.25)

Now, the standard way to do the integral of etx sin(x) is to
integrate by parts, but it’s a lot simpler if we recall that
eix = cosx+ i sinx so sin x = Im eix, and write2

M(t) = Im

∫ π

0

1

2
etxeix dx = Im

∫ π

0

1

2
e(t+i)x dx = Im

e(t+i)x

2(t+ i)

∣∣∣∣
π

0

= Im
eiπetπ − 1

2(t+ i)
(3.26)

If we recall that eiπ = −1, then we see

M(t) = − Im
etπ + 1

2(t+ i)
= − Im

etπ + 1

2

t− i
1 + t2

=
etπ + 1

2(1 + t2)
(3.27)

Thursday 5 September 2013
– Read Section 1.10 of Hogg

4 Important Inequalities

Section 1.10 contains four inequalities related to expectation val-
ues. The barrage of theorem-proof-theorem-proof can be a bit
daunting, so I’d like to break down why each of these works
with a visual demonstration. In each case there’s an inequal-
ity relating two expectation values, E[g1(X)] ≥ E[g2(X)]. Since
E[g(X)] =

∫∞
−∞ g(x) f(x) dx, and f(x) ≥ 0, then if g1(x) ≥ g2(x)

over all the range of x values with f(x) > 0, that implies
E[g1(X)] ≥ E[g2(X)].

2We could also write sinx = eix−e−ix

2i and proceed from there.
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4.1 Existence of Lower Moments

If E(Xm) exists for some random variable X and positive integer
m, then E(Xk) exists for any positive integer k < m.

The kth moment existing just means
∫∞
−∞
∣∣xk
∣∣ f(x) dx is finite,

so if we can show that
∣∣xk
∣∣ is less than something which gives

a finite result when you integrate it against f(x), we’re done.
But we know two such quantities: 1 (because the pdf being
normalized means

∫∞
−∞ f(x) dx = 1 < ∞) and |xm| because

we’re assuming the mth moment exists. But
∣∣xk
∣∣ ≤ 1 when

|x| ≤ 1 and
∣∣xk
∣∣ ≤ |xm| when |x| ≥ 1 so

∣∣xk
∣∣ ≤

{
1 |x| ≤ 1

|xm| |x| ≥ 1
(4.1)

and the expression on the right-hand side gives a finite value
when we integrate it against f(x). We can illustrate this with
k = 1 and m = 2:

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

4.2 Markov’s Inequality

If u(X) is a non-negative function of a rv X, and E[u(X)] exists,

then P [u(X)> c] ≤ E[u(X)]
c

for any positive constant c.
At first, this doesn’t look like a statement about expectation

values, but if you define a function

g(x) =

{
1 u(x) > c

0 u(x) ≤ c
(4.2)

then

P [u(X)> c] =

∫

u(x)>c

f(x) dx =

∫ ∞

−∞
g(x) f(x) dx = E[g(X)]

(4.3)

It’s pretty easy to see that u(x)
c
≥ g(x) ≥ 0 for all x:

c
u(x)

1

u(x
)/c

so

E

[
u(X)

c

]
=

1

c
E [u(X)] ≥ E[g(X)] = P [u(X)> c] (4.4)
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4.3 Chebyshev’s Inequality

If X has a finite variance σ (and therefore a finite mean µ),
then P (|X − µ| ≥ kσ) ≤ 1

k2
for any k > 0 (not necessarily an

integer).
This is actually a special case of Markov’s inequality, using

u(x) = (x− µ)2 and c = k2σ2 to show that

1

k2
=
E[(X − µ)2]

k2σ2
≥ P [(X − µ)2 ≥ k2σ2] = P (|X − µ| ≥ kσ)

(4.5)
but since Chebyshev’s inequality is an important result, it’s
worth keeping a separate picture in mind for it. Define

g(x) =

{
1 |x− µ| > kσ

0 |x− µ| ≤ kσ
(4.6)

and we can see
(
x−µ
kσ

)2 ≥ g(x):

µ− kσ µ µ+ kσ
x

0

1

(
x−µ
kσ

)2

so that

1

k2
=
E[(X − µ)2]

k2σ2
≥ E[g(X)] = P (|X − µ| ≥ kσ) (4.7)

4.4 Jensen’s Inequality

If φ(x) is a convex function over the set of possible values of X,
which has a finite mean E(X), then φ(E[X]) ≤ E[φ(X)].

The hardest part about this is keeping straight the definition
of a convex function, which is a function such that if you connect
any two points on the graph, the line will lie above the graph, or
equivalently, if you make a tangent at any point, the line with
that slope will lie above the graph. If the function is differen-
tiable, this is equivalent to saying that φ′(x) never decreases as
x increases, or, if it’s twice differentiable, that φ′′(x) ≥ 0.

The geometric construction is to make a tangent line to the
graph of φ(x) at x = µ = E(X):

µ
x

φ(µ)

φ(x)

φ(
µ)
+
φ
′ (µ

)(
x
− µ

)

Since φ(x) ≥ φ(µ) + φ′(µ)(x− µ), we have

E[φ(X)] ≥ E[φ(µ) + φ′(µ)(X − µ)] = E[φ(µ)] (4.8)

where we have used the fact that E(X) = µ.
A familiar manifestation of Jensen’s inequality is the fact that

the variance σ2 = E[X]− µ2 ≥ 0.
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