Using Geometry to Convert Complex Numbers Between Polar \& Cartesian Form

1016-420-02: Complex Variables*

Fall 2011

We've seen how to convert the complex number $z=x+i y=r e^{i \theta}$ between Cartesian coördinates (x, y) and polar coördinates (r, θ) using the transformations

$$
\begin{align*}
& x=r \cos \theta \tag{1a}\\
& y=r \sin \theta \tag{1b}
\end{align*}
$$

$$
\begin{align*}
r & =\sqrt{x^{2}+y^{2}} \tag{2a}\\
\theta & =\operatorname{atan2}(y, x) \tag{2b}
\end{align*}
$$

together with a table of trig functions of multiples of $\pi / 4$ and $\pi / 6$. Rather than memorizing or reconstructing that table of trig functions, one can instead remember the following two triangles (shown with their angles labelled in degrees and then in radians):

[^0]
Examples

1. Convert $z=-\sqrt{3}+i$ into polar form.

First we read off from $z=x+i y=-\sqrt{3}+i$ the Cartesian coördinates

$$
\begin{align*}
& x=-\sqrt{3} \tag{3a}\\
& y=1 . \tag{3b}
\end{align*}
$$

This point lies in the second quadrant:

The sides $\sqrt{3}$ and 1 fit into our $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, which we blow up in the righthand side of the diagram. The modulus is $r=|z|=\sqrt{x^{2}+y^{2}}=\sqrt{3+1}=2$, which can also be seen from the fact that the hypotenuse of the triangle is 2 . We see that the angle θ is between $\pi / 2\left(90^{\circ}\right)$ and $\pi\left(180^{\circ}\right)$. Since the small angle of the triangle is $\pi / 6$, we must have

$$
\begin{equation*}
\theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6} \tag{4}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
z=-\sqrt{3}+i=2 e^{i 5 \pi / 6} \tag{5}
\end{equation*}
$$

Note that these triangles tell us that

$$
\begin{align*}
\cos \theta & =\frac{x}{r}=\cos \frac{5 \pi}{6}=-\frac{\sqrt{3}}{2} \tag{6a}\\
\sin \theta & =\frac{y}{r}=\sin \frac{5 \pi}{6}=\frac{1}{2} \tag{6b}
\end{align*}
$$

Note also that we would have got the wrong answer if we'd taken

$$
\begin{equation*}
\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}\left(\frac{1}{-\sqrt{3}}\right)=\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)=-\frac{\pi}{6} \neq \theta . \tag{7}
\end{equation*}
$$

2. Convert $z=4 e^{-i 3 \pi / 4}$ into Cartesian form.

First we read off from $z=r e^{i \theta}=4 e^{-i 3 \pi / 4}$ the polar coördinates

$$
\begin{align*}
& r=4 \tag{8a}\\
& \theta=-\frac{3 \pi}{4} . \tag{8b}
\end{align*}
$$

Since $\theta=-3 \pi / 4$ is between $-\pi\left(-180^{\circ}\right)$ and $-\pi / 2\left(-90^{\circ}\right)$, the point lies in the third quadrant:

Looking at the diagram and using $\pi-3 \pi / 4=\pi / 4$, we see that the angles in the triangle are 45°, which gives us the isosceles right triangle blown up on the right. We've scaled up the triangle by a factor of $2 \sqrt{2}$ so that the hypotenuse is $r=4$, from which we can read off

$$
\begin{align*}
& x=-2 \sqrt{2} \tag{9a}\\
& y=-2 \sqrt{2} \tag{9b}
\end{align*}
$$

i.e.,

$$
\begin{equation*}
z=4 e^{-i 3 \pi / 4}=-2 \sqrt{2}-i 2 \sqrt{2} . \tag{10}
\end{equation*}
$$

Note that these triangles tell us that

$$
\begin{align*}
& \cos \theta=\frac{x}{r}=\cos \left(-\frac{3 \pi}{4}\right)=-\frac{\sqrt{2}}{2} \tag{11a}\\
& \sin \theta=\frac{y}{r}=\sin \left(-\frac{3 \pi}{4}\right)=-\frac{\sqrt{2}}{2} \tag{11b}
\end{align*}
$$

[^0]: *Copyright 2011, John T. Whelan, and all that

