1016-345-01
 Probability and Statistics for Engineers

Problem Set 8

Assigned 2011 February 8
Due 2011 February 15

Show your work on all problems! If you use a computer to assist with numerical computations, turn in your source code as well.

1 Devore Chapter 7, Problem 4

2 Devore Chapter 7, Problem 22

3 Devore Chapter 7, Problem 34

4 Devore Chapter 7, Problem 44

5 Computational Exercise (Extra Credit)

a. Assuming a $95 \% \mathrm{CL}$ (i.e., $\alpha=.05$), and a measured estimate $\hat{p}=.5$ for a population proportion, plot the approximate upper and lower confidence interval limits

$$
p_{ \pm}(n, \hat{p})=\frac{\hat{p}+\frac{z_{\alpha / 2}^{2}}{2 n} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}+\frac{z_{\alpha / 2}^{2}}{4 n^{2}}}}{1+\frac{z_{\alpha / 2}^{2}}{n}}
$$

versus n for $n=2,4,6, \ldots, 200$. On the same set of axes, plot the less accurate traditional CI limits $p_{ \pm}^{\text {trad }}(n, \hat{p})=\hat{p} \pm z_{\alpha / 2} \sqrt{\hat{p}(1-\hat{p}) / n}$.
b. Repeat the process for $\hat{p}=.25$ and $n=4,8,12 \ldots, 200$.
c. Repeat the process for $\hat{p}=.1$ and $n=10,20,30, \ldots, 200$.
d. Extra extra credit: In each case, we can use the exact binomial pmf $b(x ; n, p)$ and cdf $B(x ; n, p)$ to find the exact probabilities $B\left(n \hat{p} ; n, p_{-}\right)-b\left(n \hat{p} ; n, p_{-}\right) / 2$ and $B\left(n \hat{p} ; n, p_{+}\right)-b\left(n \hat{p} ; n, p_{+}\right) / 2$ that of getting a measurement of \hat{p} or below given a population proportion at the lower or upper end of the CI, respectively. If the approximate formulas for the CI limits were exact, these numbers would be .975 and .025 . Plot them versus n and check the validity of this approximation.

