1060-710
 Mathematical and Statistical Methods for Astrophysics

Problem Set 2

Assigned 2009 September 17
Due 2009 September 24

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Solutions to the Boundary Value Problem

In class we showed that the wave equation

$$
\begin{equation*}
\nabla^{2} \psi-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0 \tag{1.1}
\end{equation*}
$$

with the boundary condition $\psi(a, \phi, t)=0$ and initial conditions $\psi(r, \phi, 0)=f(r, \phi)$ and $\dot{\psi}(r, \phi, 0)=0$ had a solution of the form

$$
\begin{equation*}
\psi(r, \phi, t)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\frac{\gamma_{m n}}{a} r\right)\left(A_{m n} \cos m \phi+B_{m n} \sin m \phi\right) \cos \frac{\gamma_{m n}}{a} c t \tag{1.2}
\end{equation*}
$$

where $\gamma_{m n}$ is the nth non-trivial zero of the m th bessel function so $J_{m}\left(\gamma_{m n}\right)=0$.
a) Use your favorite plotting program to plot $J_{m}\left(\frac{\gamma_{m n}}{a} r\right)$ versus r / a for various choices of m and n as follows:
i) Plot $J_{0}\left(\frac{\gamma_{0 n}}{a} r\right)$ for $n=1,2,3$ on one set of axes.
ii) Plot $J_{1}\left(\frac{\gamma_{1 n}}{a} r\right)$ for $n=1,2,3$ on one set of axes.
iii) Plot $J_{2}\left(\frac{\gamma_{2 n}}{a} r\right)$ for $n=1,2,3$ on one set of axes.

In maplotlib, it's convenient to import from scipy.special the functions $j n$ and jn_zeros. Note that e.g. jn_zeros $(2,3)$ returns an array containing γ_{21}, γ_{22} and γ_{23}.
b) We knew already from the power series expansions that $J_{m}(0)=0$ for $m>0$; explain why that is necessary to ensure $\psi(r, \phi, t)$ is well-defined.
c) Suppose now that the boundary condition is $\left.\frac{\partial \psi}{\partial r}\right|_{r=q} \equiv \psi_{, r}(a, \phi, t)=0$. Work out the solution to the wave equation in a form similar to (1.2) using the definition that $\nu_{m n}$ is the nth zero of the derivative $J_{m}^{\prime}(x)$ of the m th Bessel function.

2 Orthogonality of Spherical Bessel Functions

Recall that the radial part of the Helmholtz equation, separated in spherical coördinates, produced an ODE which was solved by the spherical Bessel functions

$$
\begin{equation*}
r^{2} \frac{d^{2}}{d r^{2}} j_{\ell}(k r)+2 r \frac{d}{d r} j_{\ell}(k r)+\left[k^{2} r^{2}-\ell(\ell+1)\right] j_{\ell}(k r)=0 \tag{2.1}
\end{equation*}
$$

a) Convert (2.1) into an eigenvalue equation of the form

$$
\begin{equation*}
\mathcal{L} j_{\ell}(k r)=\frac{1}{b(r)}\left[\frac{d}{d r}\left(p(r) \frac{d}{d r}\right)+q(r)\right] j_{\ell}(k r)=\lambda j_{\ell}(k r) \tag{2.2}
\end{equation*}
$$

with explicit forms for the $b(r), p(r)$ and $q(r)$ (which may depend on ℓ), and λ (which will depend on k).
b) Choose a physically-motivated weighting function $w(r)$ by considering the radial part $w(r) d r$ of the measure for volume integrals in spherical coördinates.
c) Show that \mathcal{L} is self-adjoint under the inner product

$$
\begin{equation*}
\langle u, v\rangle=\int_{0}^{a} u(r) v(r) w(r) d r \tag{2.3}
\end{equation*}
$$

where $u(r)$ and $v(r)$ are regular at the origin and vanish at $r=a$.
d) Use these results to write an orthogonality relation between $j_{\ell}\left(k_{1} r\right)$ and $j_{\ell}\left(k_{2} r\right)$ where $k_{1} a$ and $k_{2} a$ are zeros of the spherical Bessel function $j_{\ell}(x)$.

3 Associated Legendre Functions

Verify that if $P_{\ell}(x)$ is a solution to the Legendre equation

$$
\begin{equation*}
\left(1-x^{2}\right) P_{\ell}^{\prime \prime}(x)-2 x P_{\ell}^{\prime}(x)+\ell(\ell+1) P_{\ell}(x)=0 \tag{3.1}
\end{equation*}
$$

then

$$
\begin{equation*}
P_{\ell}^{m}(x)=\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{\ell}(x) \tag{3.2}
\end{equation*}
$$

is a solution to

$$
\begin{equation*}
\left(1-x^{2}\right) P_{\ell}^{m \prime \prime}(x)-2 x P_{\ell}^{m \prime}(x)+\left(\ell(\ell+1)+\frac{m^{2}}{1-x^{2}}\right) P_{\ell}^{m}(x)=0 \tag{3.3}
\end{equation*}
$$

4 Eigenfunction Expansion

Consider the expansion of $\sin \theta$ in Legendre polynomials

$$
\begin{equation*}
\sin \theta=\sqrt{1-\mu^{2}}=\sum_{\ell=0}^{\infty} c_{\ell} P_{\ell}(\cos \theta)=\sum_{\ell=0}^{\infty} c_{\ell} P_{\ell}(\mu) \tag{4.1}
\end{equation*}
$$

a) Use the orthogonality condition

$$
\begin{equation*}
\int_{0}^{\pi} P_{\ell}(\cos \theta) P_{\ell^{\prime}}(\cos \theta) \sin \theta d \theta=\int_{-1}^{1} P_{\ell}(\mu) P_{\ell^{\prime}}(\mu) d \mu=\frac{2}{2 \ell+1} \delta_{\ell \ell^{\prime}} \tag{4.2}
\end{equation*}
$$

to write c_{ℓ} in terms of an integral over μ and an equivalent integral over θ.
b) Show that $c_{\ell}=0$ for odd ℓ.
c) Using the explicit forms $P_{0}(\cos \theta)=1$ and $P_{2}(\cos \theta)=\left(3 \cos ^{2} \theta-1\right) / 2$, find the values of c_{0} and c_{2} explicitly.

