1060-710

Mathematical and Statistical Methods for Astrophysics

Problem Set 2

Assigned 2009 September 17 Due 2009 September 24

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Solutions to the Boundary Value Problem

In class we showed that the wave equation

$$\nabla^2 \psi - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = 0 \tag{1.1}$$

with the boundary condition $\psi(a, \phi, t) = 0$ and initial conditions $\psi(r, \phi, 0) = f(r, \phi)$ and $\dot{\psi}(r, \phi, 0) = 0$ had a solution of the form

$$\psi(r,\phi,t) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m \left(\frac{\gamma_{mn}}{a}r\right) \left(A_{mn}\cos m\phi + B_{mn}\sin m\phi\right) \cos\frac{\gamma_{mn}}{a}ct$$
 (1.2)

where γ_{mn} is the nth non-trivial zero of the mth bessel function so $J_m(\gamma_{mn}) = 0$.

- a) Use your favorite plotting program to plot $J_m\left(\frac{\gamma_{mn}}{a}r\right)$ versus r/a for various choices of m and n as follows:
 - i) Plot $J_0\left(\frac{\gamma_{0n}}{a}r\right)$ for n=1,2,3 on one set of axes.
 - ii) Plot $J_1\left(\frac{\gamma_{1n}}{a}r\right)$ for n=1,2,3 on one set of axes.
 - iii) Plot $J_2\left(\frac{\gamma_{2n}}{a}r\right)$ for n=1,2,3 on one set of axes.

In maplotlib, it's convenient to import from scipy.special the functions jn and jn_zeros. Note that e.g. jn_zeros(2,3) returns an array containing γ_{21} , γ_{22} and γ_{23} .

- b) We knew already from the power series expansions that $J_m(0) = 0$ for m > 0; explain why that is necessary to ensure $\psi(r, \phi, t)$ is well-defined.
- c) Suppose now that the boundary condition is $\frac{\partial \psi}{\partial r}|_{r=a} \equiv \psi_{,r}(a,\phi,t) = 0$. Work out the solution to the wave equation in a form similar to (1.2) using the definition that ν_{mn} is the *n*th zero of the derivative $J'_m(x)$ of the *m*th Bessel function.

2 Orthogonality of Spherical Bessel Functions

Recall that the radial part of the Helmholtz equation, separated in spherical coördinates, produced an ODE which was solved by the spherical Bessel functions

$$r^{2} \frac{d^{2}}{dr^{2}} j_{\ell}(kr) + 2r \frac{d}{dr} j_{\ell}(kr) + \left[k^{2} r^{2} - \ell(\ell+1)\right] j_{\ell}(kr) = 0$$
(2.1)

a) Convert (2.1) into an eigenvalue equation of the form

$$\mathcal{L}j_{\ell}(kr) = \frac{1}{b(r)} \left[\frac{d}{dr} \left(p(r) \frac{d}{dr} \right) + q(r) \right] j_{\ell}(kr) = \lambda j_{\ell}(kr)$$
 (2.2)

with explicit forms for the b(r), p(r) and q(r) (which may depend on ℓ), and λ (which will depend on k).

- b) Choose a physically-motivated weighting function w(r) by considering the radial part w(r) dr of the measure for volume integrals in spherical coördinates.
- c) Show that \mathcal{L} is self-adjoint under the inner product

$$\langle u, v \rangle = \int_0^a u(r) \, v(r) \, w(r) \, dr \tag{2.3}$$

where u(r) and v(r) are regular at the origin and vanish at r=a.

d) Use these results to write an orthogonality relation between $j_{\ell}(k_1r)$ and $j_{\ell}(k_2r)$ where k_1a and k_2a are zeros of the spherical Bessel function $j_{\ell}(x)$.

3 Associated Legendre Functions

Verify that if $P_{\ell}(x)$ is a solution to the Legendre equation

$$(1 - x^2)P_{\ell}''(x) - 2xP_{\ell}'(x) + \ell(\ell+1)P_{\ell}(x) = 0$$
(3.1)

then

$$P_{\ell}^{m}(x) = (1 - x^{2})^{m/2} \frac{d^{m}}{dx^{m}} P_{\ell}(x)$$
(3.2)

is a solution to

$$(1 - x^2)P_{\ell}^{m"}(x) - 2xP_{\ell}^{m"}(x) + \left(\ell(\ell+1) + \frac{m^2}{1 - x^2}\right)P_{\ell}^{m}(x) = 0$$
(3.3)

4 Eigenfunction Expansion

Consider the expansion of $\sin \theta$ in Legendre polynomials

$$\sin \theta = \sqrt{1 - \mu^2} = \sum_{\ell=0}^{\infty} c_{\ell} P_{\ell}(\cos \theta) = \sum_{\ell=0}^{\infty} c_{\ell} P_{\ell}(\mu)$$
 (4.1)

a) Use the orthogonality condition

$$\int_{0}^{\pi} P_{\ell}(\cos \theta) P_{\ell'}(\cos \theta) \sin \theta \, d\theta = \int_{-1}^{1} P_{\ell}(\mu) P_{\ell'}(\mu) d\mu = \frac{2}{2\ell + 1} \delta_{\ell\ell'} \tag{4.2}$$

to write c_{ℓ} in terms of an integral over μ and an equivalent integral over θ .

- b) Show that $c_{\ell} = 0$ for odd ℓ .
- c) Using the explicit forms $P_0(\cos \theta) = 1$ and $P_2(\cos \theta) = (3\cos^2 \theta 1)/2$, find the values of c_0 and c_2 explicitly.