
Notes on Fourier Methods

1060-710: Mathematical and Statistical Methods for Astrophysics∗

Fall 2009

Contents

1 Fourier Series 1

2 Continuous Fourier Transform 3
2.1 Convolution . 4
2.2 Properties of the Fourier Transform . 5

3 Discrete Fourier Transform 6
3.1 Nyquist Frequency and Aliasing . 8

4 Spectral Analysis of Random Data 11
4.1 Amplitude Spectrum . 11
4.2 Random Variables . 11

4.2.1 Random Sequences . 12
4.3 Continuous Random Data . 13

4.3.1 White Noise . 13
4.3.2 Colored Noise . 13
4.3.3 Wide-Sense Stationary Data . 14
4.3.4 Symmetry Properties of the Auto-Correlation and the PSD 15
4.3.5 Power Spectrum Estimation . 15

Tuesday, September 29, 2009

1 Fourier Series

Consider functions defined on an interval

− T

2
≤ T ≤ T

2
(1.1)

The differential equation
d2

dt2
h(t) = −ω2h(t) (1.2)

∗Copyright 2009, John T. Whelan all that

1

has solutions, when ω 6= 0, of1 cosωt and sinωt. Or, equivalently, since

eiωt = cosωt+ i sinωt (1.3)

one can also write the two solutions as eiωt and e−iωt. From Sturm-Liouville theory, we
recognize

d2

dt2
(1.4)

as a self-adjoint operator under the inner product

〈h1, h2〉 =

∫ T/2

−T/2
h∗1(t)h2(t) dt (1.5)

so its eigenfunctions should form an orthogonal basis. Note that cosωt and sinωt both have
the eigenvalue −ω2, but symmetry properties ensure that∫ T/2

−T/2
cosω1t sinω2t dt = 0 . (1.6)

It’s actually easier to work with the complex versions, though, and we note that

i
d

dt
(1.7)

is also a self-adjoint operator, and eiωt and e−iωt are eigenfunctions of that operator with
different eigenvalues.

We can check orthogonality by writing

〈eiω1t, eiω2t〉 =

∫ T/2

−T/2
ei(ω2−ω1)tdt ; (1.8)

For ω1 = ω2 this is T, while for ω1 6= ω2 it is

ei(ω2−ω1)t

i(ω2 − ω1)

∣∣∣∣T/2
−T/2

=
ei(ω2−ω1)T/2 − e−i(ω2−ω1)T/2

i(ω2 − ω1)
=

2

(ω2 − ω1)
sin

(ω2 − ω1)T

2
(1.9)

so in general

〈eiω1t, eiω2t〉 =

{
T if ω1 = ω2

2
(ω2−ω1)

sin (ω2−ω1)T
2

if ω1 6= ω2

(1.10)

We didn’t get zero in the ω1 6= ω2 case, but we haven’t yet imposed the boundary conditions
on the eigenfunctions, which restrict the possible choices of ω. One choice of boundary
conditions which makes the differential operators self-adjoint is to require periodicity, i.e.,

eiωT/2 = eiω(−T/2) (1.11)

1If ω = 0, the independent solutions are 1 and t.

2

which means that

sin
ωT

2
= 0 (1.12)

and limit us to
ωT

2
= nπ (1.13)

so that

ωn =
2πn

T
(1.14)

and we do get orthogonality because

〈ei2πn1t/T , ei2πn1t/T 〉 =

{
T if n1 = n2

T
π(n2−n1)

sin[(n2 − n1)π] = 0 if n1 6= n2

(1.15)

or, written more compactly,∫ T/2

−T/2

(
ei2πn1t

)∗ (
ei2πn2t

)
dt = Tδn1n2 (1.16)

where δmn is the usual Kronecker delta.
Since we can expand any function in the eigenfunctions of d2

dt2
(or in this case of i d

dt
, we

can write

h(t) =
∞∑

n=−∞

cn exp

(
i2πnt

T

)
(1.17)

We can use the orthogonality to find the coëfficients:∫ T/2

−T/2
e−

i2πnt
T h(t) dt =

∞∑
m=∞

cmTδmn = Tcn (1.18)

i.e.,

cn =
1

T

∫ T/2

−T/2
h(t) exp

(
−i2πnt

T

)
dt (1.19)

2 Continuous Fourier Transform

Note that if we write
fn =

n

T
= n δf (2.1)

so that

h(t) =
∞∑

n=−∞

cn e
i2πfnt (2.2)

the frequencies are spaced closer together for larger T . If we write

h(t) =
∞∑

n=−∞

Tcn︸︷︷︸
h̃(fn)

ei2πfnt δf (2.3)

3

and take the limit as T →∞ so that the sum becomes an integral, we get

h(t) =

∫ ∞
−∞

h̃(f) ei2πft df (2.4)

and the inverse

h̃(fn) = Tcn =

∫ T/2

−T/2
h(t) e−i2πfnt dt (2.5)

becomes

h̃(f) =

∫ ∞
−∞

h(t) e−i2πft dt (2.6)

Note that the orthogonality relation∫ T/2

−T/2
ei2π(f2−f1)t dt = T δn1n2 (2.7)

becomes, in the limit of infinite T ,∫ ∞
−∞

ei2π(f2−f1)t dt = δ(f2 − f1) (2.8)

where δ(f2 − f1) is the Dirac delta function defined by∫ ∞
−∞

δ(f2 − f1)H(f1) df1 = H(f2) ; (2.9)

we can check that we got the normalization right by noting

∞∑
n1=−∞

T δn1n2 δf =
∞∑

n1=−∞

δn1n2 = 1 (2.10)

Thursday, October 1, 2009

2.1 Convolution

A common physical situation is for one quantity, as a function of time, to be linearly related
to another quantity, which we can write as:

g(t) =

∫ ∞
−∞

A(t, t′)h(t′) dt′ . (2.11)

If the mapping of h(t) onto g(t) is stationary, e.g., doesn’t depend on any time-dependent
external factors, it can be written even more simply:

g(t) =

∫ ∞
−∞

A(t− t′)h(t′) dt′ . (2.12)

4

This relationship is known as a convolution and is sometimes written g = A ∗ h. It can be
written even more simply if we substitute in the form of A(t− t′) and h(t′) in terms of their
Fourier transforms:

h(t′) =

∫ ∞
−∞

h̃(f) ei2πft
′
df (2.13)

A(t− t′) =

∫ ∞
−∞

Ã(f ′) ei2πf
′(t−t′) df ′ (2.14)

(where we have used different names for the two frequency integration variables so we don’t
mix them up) to get

g(t) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Ã(f ′) h̃(f) ei2π[f
′(t−t′)+ft′] df df ′ dt′

=

∫ ∞
−∞

∫ ∞
−∞

Ã(f ′) h̃(f) ei2πf
′t

∫ ∞
−∞

ei2π(f−f
′)t′ dt′ df ′ df

=

∫ ∞
−∞

∫ ∞
−∞

Ã(f ′) h̃(f) ei2πf
′t δ(f − f ′) df ′ df

=

∫ ∞
−∞

Ã(f) h̃(f) ei2πft df

(2.15)

which means that
g̃(f) = Ã(f) h̃(f) , (2.16)

i.e., convolution in the time domain is equivalent to multiplication in the frequency domain.

2.2 Properties of the Fourier Transform

There are a number of important and useful properties obeyed by Fourier transforms, and
handy Fourier transforms of specific function.

• If h(t) is real, then h̃(−f) = h̃∗(f).

• If h(t) = h0, a constant, then

h̃(f) =

∫ ∞
−∞

h0e
−i2πftdt = h0δ(f) (2.17)

• If h(t) = h0δ(t− t0), then h̃(f) = h0e
−i2πft0

• If h(t) is a square wave

h(t) =

{
h0

−τ
2
< t < τ

2

0 |t| > T
2

(2.18)

then

h̃(f) = h0
2πfτ

πf
= 2h0τ sinc 2fτ (2.19)

5

where

sincx =
sinπx

πx
(2.20)

is the normalized sinc function.

• If h(t) is a Gaussian

h(t) =
1

σ
√

2π
e−t

2/2σ2

(2.21)

then its Fourier transform is also a Gaussian:

h̃(f) = e−(2πf)
2/2σ−2

(2.22)

Note that the narrower the Gaussian is in the time domain, the wider the corresponding
Gaussian is in the frequency domain. This is related to the Heisenberg uncertainty
principle.

• Dimensionally, the units of h̃(f) are the units of h(t) times time (or divided by fre-

quency). We’ll usually say, e.g., if h(t) has units of “gertrudes”, h̃(f) has units of
“gertrudes per hertz”.

• ∫ ∞
−∞

h∗(t) g(t) dt =

∫ ∞
−∞

h̃∗(f) g̃(f) df (2.23)

It’s a useful exercise, and not too hard, to demonstrate each of these.

3 Discrete Fourier Transform

Recall that an ordinary Fourier series could be written in the form (2.3) relating a finite-

duration h(t) to its Fourier components h̃(fn), with inverse relationship (2.5). The time
variable t is continuously-defined with finite duration, while the frequency fn takes on only
a discrete set of values, but ranges from −∞ to ∞. This situation is summarized as follows:

Resolution Extent
t continuous duration T
f discrete, δf = 1

T
infinite

When we took the limit as T → ∞ to define the inverse Fourier transform (2.4) and the
Fourier transform (2.6) we ended up with both frequency and time being continuously defined
from −∞ to ∞:

Resolution Extent
t continuous infinite
f continuous infinite

6

In an experimental situation, on the other hand, not only is the duration finite, but the time
is also discretely sampled. Consider the simplest case of N samples separated by a fixed
sampling time of δt so that the total duration is T = N δt:

hj = h(tj) = h(t0 + j δt) j = 0, 1, . . . N − 1 (3.1)

we’d like to define the Fourier transform

h̃(fk) =

∫ to+T

t0

h(t) e−i2πfk(t−t0) dt (3.2)

but we don’t have access to the full function h(t), only the discrete samples {hj}. The best
we can do, then is approximate the integral by a sum and see what we get:

N−1∑
j=0

hj e
−i2πfk(tj−t0) δt =

N−1∑
j=0

hj e
−i2π(k δf)(j δt) δt =

N−1∑
j=0

hj e
−i2πjk/N δt (3.3)

where in the last step we’ve used the fact that

δf δt =
δt

T
=

1

N
(3.4)

Now, (3.3) is the discrete approximation to the Fourier transform, so we could call it some-

thing like h̃k. But if you’re a computer manipulating a set of numbers {hj}, you don’t really
need to know the physical sampling rate, except for the factor of δt in (3.3). So the standard
definition of the discrete Fourier transform leaves this out:

ĥk =
N−1∑
j=0

hj e
−i2πjk/N (3.5)

In principle (3.5) can be used to define the discrete Fourier transform for any integer k.

However, we can see that not all of the ĥk are independent; in particular,

ĥk+N =
N−1∑
j=0

hj e
−i2πjk/N e−i2πj =

N−1∑
j=0

hj e
−i2πjk/N = ĥk (3.6)

where we have used the fact that

e−i2πj = cos 2πj − i sin 2πj = 1 (3.7)

since j is an integer. This means there are only N independent ĥk values, which is not
surprising, since we started with N samples {hj}. One choice is to let k go from 0 to N − 1,
and we can use that to calculate the inverse transform by starting with

N−1∑
k=0

ĥk e
i2πjk/N =

N−1∑
k=0

N−1∑
`=0

h` e
i2π(j−`)k/N (3.8)

7

If we recall that
1− aN = (1− a) (1 + a+ a2 + . . .+ aN−1) (3.9)

we can see that

N−1∑
k=0

ei2π(j−`)k/N =
N−1∑
k=0

(
ei2π(j−`)/N

)k
=

{
N if j = ` mod N
1−ei2π(j−`)

1−ei2π(j−`)/N = 0 if j 6= ` mod N
(3.10)

i.e.,
N−1∑
k=0

ei2π(j−`)k/N = N δj,` mod N (3.11)

so
N−1∑
k=0

ĥk e
i2πjk/N =

N−1∑
`=0

h`N δj,` mod N = Nhj (3.12)

and the inverse transform is

hj =
1

N

N−1∑
k=0

ĥk e
i2πjk/N (3.13)

Note that the asymmetry between the forward and reverse transform arose because we left
out the factor of δt from (3.5); if we write

(ĥk δt) =
N−1∑
j=0

hj e
−i2πjk/N δt (3.14)

then the inverse transform is

hj =
N−1∑
k=0

(ĥk δt) e
i2πjk/N 1

N δt
=

N−1∑
k=0

(ĥk δt) e
i2πjk/N δf (3.15)

which restores the notational symmetry of the continuous Fourier transform.

Tuesday, October 6, 2009

3.1 Nyquist Frequency and Aliasing

In this discussion we’ll assume the number of samples N is even; the generalization to odd
N is straightforward.

We saw last time that if you take the discrete Fourier transform of N data points {hj},
the periodicity ĥk+N = ĥk means that only N of the Fourier components are independent.
We implicitly considered those to be {ĥk|k = 0, 1, . . . , N − 1}, which is certainly convenient
if you’re a computer, but it doesn’t really make the most physical sense.

For example, consider the behavior of the discrete Fourier transform if the original time
series is real, so that h∗j = hj.

if h∗j = hj, ĥ∗k =

(
N−1∑
j=0

hj e
−i2πjk/N

)∗
=

N−1∑
j=0

hj e
i2πjk/N = ĥ−k = ĥN−k (3.16)

8

If we confine our attention to 0 ≤ k ≤ N−1, the appropriate symmetry relation is ĥN−k = ĥ∗k,
which means the second half of the list of Fourier components is determined by the first. But
this seems a little bit removed from the corresponding symmetry property h̃(−f) = h̃∗(f)
from the continuous Fourier transform.

To better keep positive and negative frequencies together, we’d like to consider the phys-
ically interesting set of N Fourier components to be{

ĥk

∣∣∣∣k = −N
2
, . . . ,

N

2
− 1

}
. (3.17)

It’s a matter of convention that we include −N/2 rather than N/2 in the list. It makes things
more convenient for fftshift() functions in SciPy, matlab, etc., which move the Fourier
components {ĥN/2, . . . ĥN−1} to the front of a vector so they can represent {ĥ−N/2, . . . ĥ−1}.

Note now that the reality condition becomes

if h∗j = hj, ĥ∗k = ĥ−k (3.18)

which means that all of the negative components {ĥ−N/2+1, . . . ĥ−1} of the DFT of a real
series are just the complex conjugates of the corresponding positive components. The reality
condition also enforces

ĥ0 = ĥ∗0 ∈ R (3.19a)

ĥ−N/2 = ĥ∗N/2 = ĥ∗−N/2 ∈ R (3.19b)

So from N real samples {hj|j = 0 . . . N − 1} we get a discrete Fourier transform completely

described by 2 real components ĥ0 and ĥ−N/2 = ĥN/2 and N
2
− 1 complex components

{ĥk|k = 1 . . . N
2
− 1}.

The frequency corresponding to the last Fourier component,∣∣f−N/2∣∣ =
∣∣fN/2∣∣ =

N

2
δf =

1

2 δt
(3.20)

is half of the sampling frequency 1/δt, and is known as the Nyquist frequency. It is the
highest frequency which can be resolved in the discrete Fourier transform of a series sampled
with a sampling time δt. Of course, as we’ve seen, frequencies above the Nyquist frequency,
which correspond to Fourier components with k > N/2, aren’t invisible, they just show up
in the same place as lower frequencies. For example, consider a cosine wave with a frequency
of 3 Hz, sampled with a time step of δt = 0.25 sec:

9

If we just look at the dots, they don’t look like a 3 Hz cosine wave, but rather like one with
a frequency of 1 Hz. And indeed, we’d get the exact same samples if we sampled a 1 Hz at
the same rate:

This is because f = 3 Hz is above the Nyquist frequency at this sampling rate, which is
fNy = 2 Hz. The higher-frequency cosine wave has been aliased down to a frequency of
fNy − f = −1 Hz.

10

Tuesday, October 13, 2009

4 Spectral Analysis of Random Data

4.1 Amplitude Spectrum

Given a real time series h(t) we know how to construct its Fourier transform

h̃(f) =

∫ ∞
−∞

e−i2πft dt (4.1)

or the equivalent discrete Fourier transform from a set of samples {hj|j = 0 . . . N − 1}:

ĥk =
N−1∑
j=0

hj e
−i2πjk/N (4.2)

where ĥk δt ∼ h̃(fk).

Think about the physical meaning of h̃(f), by breaking this complex number up into an
amplitude and phase

h̃(f) = A(f) eiφ(f) . (4.3)

If h(t) is real, the condition h̃(−f) = h̃∗(f) = A(f)e−iφ(f) means A(−f) = A(f) and
φ(−f) = φ(f). Thus we can write the inverse Fourier transform as

h(t) =

∫ 0

−∞
A(f) ei[2πft+φ(f)] df +

∫ ∞
0

A(f) ei[2πft+φ(f)] df

=

∫ ∞
0

A(f)
(
ei[2πft+φ(f)] + e−i[2πft+φ(f)]

)
df

=

∫ ∞
0

2A(f) cos (2πft+ φ(f))

(4.4)

So |h| (f) is a measure of the amplitude at frequency f and φ(f) is the phase.
Note also that ∫ ∞

−∞
[h(t)]2 dt =

∫ ∞
−∞

∣∣∣h̃(f)
∣∣∣2 df (4.5)

This works pretty well if the properties of h(t) are deterministic. But suppose h(t) is
modelled as random, i.e., it depends on a lot of factors we don’t know about, and all we
can really do is make statistical statements. What is a sensible description of the spectral
content of h?

4.2 Random Variables

Consider a random variable x. Its value is not known, but we can talk about statistical
expectations as to its value. We will have a lot more to say about this soon, but for now
imagine we have a lot of chances to measure x in an ensemble of identically-prepared systems.
The hypothetical average of all of those imagined measurements is called the expectation value

11

and we write it as 〈x〉. (Another notation is E[x].) We can also take some known function f
and talk about the expectation value 〈f(x)〉 corresponding to a large number of hypothetical
measurements of f(x).

The expectation value of x itself is the mean, sometimes abbreviated as µ. (This name
is taken by analogy to the mean of an actual finite ensemble.) Since x is random, though,
it won’t always have the value 〈x〉. We can talk about how far off x typically is from its
average value 〈x〉. Note however that

〈x− 〈x〉〉 = 〈x〉 − 〈〈x〉〉 = 〈x〉 − 〈x〉 = 0 (4.6)

since the expectation value is a linear operation (being the analogue of an average), and the
expectation value of a non-random quantity is just the quantity itself. So instead of the
mean deviation from the mean, we need to consider the mean square deviation from the
mean 〈

(x− 〈x〉)2
〉

(4.7)

This is called the variance, and is sometimes written σ2. Its square root, the root mean
square (RMS) deviation from the mean, is the standard deviation.

4.2.1 Random Sequences

Now imagine we have a bunch of random variables {xj}; in principle each can have its own
mean µj = 〈xj〉 and variance σ2

j = 〈(xj − µj)2〉. But we can also think about possible
correlations σ2

j` = 〈(xj − µj)(x` − µ`)〉; if the variables are uncorrelated σ2
j` = δj` σ

2
j , but

that need not be the case.
Think specifically about a series of N samples which are all uncorrelated random variables

with zero mean and the same variance:

〈xj〉 = 0; 〈xjx`〉 = δj` σ
2 ; (4.8)

what are the characteristics of the discrete Fourier transform of this sequence?

x̂k =
N−1∑
j=0

xj e
−i2πjk/N (4.9)

Well,

〈x̂k〉 =
N−1∑
j=0
�
��>

0
〈xj〉 e−i2πjk/N = 0 (4.10)

and

〈x̂kx̂∗`〉 =
N−1∑
j=0

N−1∑
n=0

〈xjxn〉 e−i2π(jk−n`)/N =
N−1∑
j=0

σ2e−i2πj(k−`)/N = Nσ2δk,` mod N (4.11)

so the Fourier components are also uncorrelated random variables with variance〈
|x̂k|2

〉
= Nσ2 (4.12)

12

Note this is independent of k, which is maybe a bit surprising. After all, it’s natural to think
all times are alike, but all frequencies need not be. Random data like this, which is the same
at all frequencies, is called “white noise”. To gain some more insight into white and colored
noise, it helps to think about the same thing in the idealization of the continuous Fourier
transform.

4.3 Continuous Random Data

Think about the continuous-time analog to the random sequence considered in section 4.2.1.
This is a time series x(t) which is characterized by statistical expectations. In particular we
could talk about its expectation value

〈x(t)〉 = µ(t) (4.13)

and the expectation value of the product of samples taken at possibly different times

〈x(t)x(t′)〉 = Kx(t, t
′) (4.14)

(it’s conventional not to subtract out µ(t) here). Note that 〈x(t)〉 is not the time-average
of a particular instantiation of x(t), although the latter may sometimes be used to estimate
the former.

4.3.1 White Noise

Now, for white noise we need the continuous-time equivalent of (4.8), in which the data is
uncorrelated with itself except at the very same time. In the case of continuous time, the
sensible thing is the Dirac delta function, so white noise is characterized by

〈x(t)x(t′)〉 = K0 δ(t− t′) (4.15)

where K0 is a measure of how “loud” the noise is. In the frequency domain, this means

〈x̃(f)x̃∗(f ′)〉 =

∫ ∞
−∞

∫ ∞
−∞
〈x(t)x(t′)〉 e−i2π(ft−f ′t′) dt dt′ = K0

∫ ∞
−∞

e−i2π(f−f
′)t dt

= K0 δ(f − f ′) .
(4.16)

4.3.2 Colored Noise

A lot of times, the quantity measured in an experiment is related to some starting quantity
by a linear convolution, so even if we start out with white noise, we could end up dealing
with something that has different properties. If we consider some random variable h(t) which
is produced by convolving white noise with a deterministic response function R(t − t′), so
that

h(t) =

∫ ∞
−∞

R(t− t′)x(t′) dt′ (4.17)

and in the frequency domain
h̃(f) = R̃(f)x̃(f) (4.18)

13

we have 〈
h̃(f)h̃∗(f ′)

〉
= K0

∣∣∣R̃(f)
∣∣∣2 δ(f − f ′) . (4.19)

Note that even in this case,
〈
|h(f)|2

〉
blows up, so simply looking at the magnitudes of

Fourier components is not the most useful thing to do. However, the quantity K0

∣∣∣R̃(f)
∣∣∣2

which multiplies the delta function can be well-behaved, and gives a useful spectrum. We’ll
see that this is the power spectral density Sh(f), which we’ll define more carefully in a bit.

We can also go back into the time domain in this example, and calculate the autocorre-
lation

Kh(t, t
′) = 〈h(t)h(t′)〉 =

∫ ∞
−∞

∫ ∞
−∞

R(t− t1)R(t′ − t′1) 〈x(t1)x(t′1)〉 dt1 dt′1

=

∫ ∞
−∞

K0R(t− t1)R(t′ − t1) dt1
(4.20)

which is basically the convolution of the response function with itself, time reversed; unlike
in the case of white noise, where Kx(t, t

′) was a delta function, this will in general be finite.
Note that in this example, the autocorrelation Kh(t, t

′) is unchanged by shifting both of
its arguments:

Kh(t+ τ, t′ + τ) = K0

∫ ∞
−∞

R(t− [t1 − τ])R(t′ − [t1 − τ]) dt1

= K0

∫ ∞
−∞

R(t− t2)R(t′ − t2) dt2 = Kh(t, t
′)

(4.21)

where we make the change of integration variables from t1 to t2 = t1 − τ . This means that
in this colored noise case the autocorrelation is a function only of t− t′.

Thursday, October 15, 2009

4.3.3 Wide-Sense Stationary Data

We now turn to a general formalism which incorporates our observations about colored noise.
A random time series h(t) is called wide-sense stationary if it obeys

〈h(t)〉 = µ = constant (4.22)

and
〈h(t)h(t′)〉 = Kh(t− t′) . (4.23)

Clearly, both our white noise and colored noise examples were wide-sense stationary. The
appearance of a convolution in the time-domain (4.20) a product in the frequency domain
(4.19) suggests to us that the Fourier transform of the auto-correlation function Kh(t − t′)
is a useful quantity. We this define the power spectral density as

Sh(f) =

∫ ∞
−∞

Kh(τ) e−i2πfτ dτ . (4.24)

14

Note that by the construction (4.23) the autocorrelation is even in its argument [Kh(τ) =
Kh(−τ)] so the PSD of real data will be real and even in f .

We can then show that for a general wide-sense stationary process,〈
h̃(f)h̃∗(f ′)

〉
=

∫ ∞
−∞

∫ ∞
−∞
〈h(t)h(t′)〉 e−i2π(ft−f ′t′) dt dt′

=

∫ ∞
−∞

∫ ∞
−∞

Kh(τ) e−i2πfτe−i2π(f−f
′)t′ dτ dt′ = δ(f − f ′)Sh(f) ,

(4.25)

where we make the change of variables from t to τ = t− t′.

4.3.4 Symmetry Properties of the Auto-Correlation and the PSD

We can see from the definition (4.23) and the result (4.25) that, for real data, both Kh(τ)
and Sh(f) are real and even, and in particular that Sh(f) = Sh(−f). (Of course the fact
that Kh(τ) and Sh(f) are Fourier transforms of each other means that once we know the
symmetry properties of one, we can deduce the symmetry properties of the other.) Because
it’s defined at both positive and negative frequencies, the power spectral density Sh(f) that
we’ve been using is called the two-sided PSD. Since the distinction between positive and
negative frequencies depends on things like the sign convention for the Fourier transform,
it is sometimes considered more natural to define a one-sided PSD which is defined only at
non-negative frequencies, and contains all of the power at the corresponding positive and
negative frequencies:

S1-sided
h (f) =

{
Sh(0) f = 0

Sh(−f) + Sh(f) f > 0
(4.26)

Apparently, for real data, S1-sided
h (f) = 2Sh(f) when f > 0.

If the original time series is not actually real, there is a straightforward generalization of
the definition of the auto-correlation function:

〈h(t)h∗(t′)〉 = Kh(t− t′) (4.27)

The PSD is then defined as the Fourier transform of this, and (4.25) holds as before. Exam-
ination of (4.27) and (4.25) shows that, for complex data, the symmetry properties which
remain are

• Kh(−τ) = K∗h(τ)

• Sh(f) is real.

Tuesday, October 20, 2009

4.3.5 Power Spectrum Estimation

Suppose we have a stretch of data, duration T , sampled at intervals of δt, from a wide-sense
stationary data stream,

hj = h(t0 + j δt) (4.28)

15

where the autocorrelation
Kh(t− t′) = 〈h(t)h(t′)〉 (4.29)

and its Fourier transform the PSD

Sh(f) =

∫ ∞
−∞

Kh(τ) e−i2πfτ dτ (4.30)

are unknown. How do we estimate Sh(f)? One idea, keeping in mind that〈
h̃(f)h̃∗(f ′)

〉
= δ(f − f ′)Sh(f) , (4.31)

is to use the discrete Fourier components to construct∣∣∣ĥk∣∣∣2 (4.32)

this is, up to normalization, the periodogram. Now, we’re going to have to be a little careful
about just using the identification

ĥk δt ∼ h̃(fk) (4.33)

where

fk = k δf =
k

T
; (4.34)

after all, taking that literally would mean setting f and f ′ both to fk and evaluating the delta
function at zero argument. So we need to be a little more careful about the approximation
that relates the discrete and continuous Fourier transforms.

If we substitute the continuous inverse Fourier transform into the discrete forward Fourier
transform, we find

ĥk =
N−1∑
j=0

h(t0 + j δt) e−i2πjk/N =
N−1∑
j=0

∫ ∞
−∞

h̃(f) e−i2πjk/N ei2πf j δt df

=

∫ ∞
−∞

(
N−1∑
j=0

e−i2πj(fk−f)δt

)
h̃(f) df =

∫ ∞
−∞

∆N([fk − f]δt) h̃(f) df

(4.35)

where we have defined2

∆N(x) =
N−1∑
j=0

e−i2πjx . (4.36)

Let’s look at some of the properties of this ∆N(x). First, if x is an integer,

∆N(x) =
N−1∑
j=0

e−i2πjx =
N−1∑
j=0

1 = N (x ∈ Z) (4.37)

2This is closely related to the Dirichlet kernel
n∑

k=−n

e−ikx = sin
(
[2n + 1]x2

)
/ sin

(
x
2

)
.

16

Next, note that ∆N(x) is periodic in x with period 1, since

∆N(x+ 1) =
N−1∑
j=0

e−i2πj(x+1) =
N−1∑
j=0

e−i2πjxe−i2πj =
N−1∑
j=0

e−i2πjx = ∆N(x) . (4.38)

Note that this is not surprising for something that relates a discrete to a continuous Fourier
transform; incrementing [fk − f]δt by 1 is the same as decrementing f by 1/δt, which is
twice the Nyquist frequency. This is just the usual phenomenon of aliasing, where many
continuous frequency components, separated at intervals of 1/δt, are mapped onto the same
discrete component.

Note also that

∆N(`/N) =
N−1∑
j=0

e−i2πj`/N = 0 ` ∈ Z and ` 6= 0 mod N (4.39)

of course, it’s sort of cheating to quote that result from before, since we got it by actually
evaluating the sum, so let’s do that again. Since

(1− aN) = (1− a)
N−1∑
j=0

aj , (4.40)

if we set a = e−i2πx, we get, for x /∈ Z (which means a 6= 1),

∆N(x) =
1− e−i2πNx

1− e−i2πx
=
e−iπNx

e−iπx
eiπNx − e−iπNx

ei2πx − e−i2πx
= e−iπ(N−1)x

sinπNx

sin πx
(4.41)

so, to summarize,

∆N(x) =

{
N , x ∈ Z
e−iπ(N−1)x

(
sinπNx
sinπx

)
, x /∈ Z

(4.42)

Now that we have a more precise relationship between ĥk and h̃(f), we can think about∣∣∣ĥk∣∣∣2, and in particular its expectation value:〈∣∣∣ĥk∣∣∣2〉 =

∫ ∞
−∞

∫ ∞
−∞

∆N([fk − f]δt)∆∗N([fk − f ′]δt)
〈
h̃(f)h̃∗(f ′)

〉
df df ′

=

∫ ∞
−∞
|∆N([fk − f]δt)|2 Sh(f) df

(4.43)

Let’s get a handle on

|∆N(x)|2 =

(
sin πNx

sin πx

)2

(4.44)

but looking at some plots of it in NumPy/matplotlib:3

3The python idiom used to define the strings for the tick labels looks confusing, but it’s pretty powerful.
r'$%d/32$' % x is python’s equivalent of sprintf(); the thing after the % (in this case x) gets formatted
according to the %d (i.e., as an integer) and put into the string (the r'$...$' construction makes sure it
gets passed along to the LATEX interpreter correctly; lambda x:etc is an anonymous function which takes
the argument x and returns whatever’s after the : (in this case the appropriately formatted string; map(,)
applies its first argument (a function) to each element in its second argument (a list) and returns the resulting
list. Google for “python map lambda” and “python sprintf” for more.

17

> ipython -pylab

x=linspace(-1.5,1.5,5e3)

D16 = (sin(16*pi*x)/sin(pi*x))**2

figure()

plot(x,D16,'k-',label=r'$N=16$')

legend()

xlabel(r'x')

ylabel(r'$|\Delta_N(x)|^2$')

yticks(arange(5)*64)

ylim([0,300])

grid(1)

savefig('Delta16.eps')

D64 = (sin(64*pi*x)/sin(pi*x))**2

figure()

plot(x,D16,'k-',label=r'$N=16$')

plot(x,D64,'b--',label=r'$N=64$')

legend()

xlabel(r'x')

ylabel(r'$|\Delta_N(x)|^2$')

yticks(arange(5)*1024)

ylim([0,4200])

xlim([-1./8,1./8.])

grid(1)

tickvals=arange(-3,4)/32.

ticklabs = map((lambda x: r'$%d/32$' % x), arange(-3,4))

xticks(tickvals,ticklabs)

savefig('Delta64.eps')

If we look for N = 16, we see that |∆N(x)|2 is indeed periodic, with period 1, and has the
value N2 = 162 = 256 for integer x:

18

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
x

0

64

128

192

256
|�

N
(x
)|2

N=16

It’s also pretty sharply peaked at integer values; we can zoom in and compare it to |∆N(x)|2
for N = 64:

�3/32 �2/32 �1/32 0/32 1/32 2/32 3/32
x

0

1024

2048

3072

4096

|�

N
(x
)|2

N=16
N=64

We see now that the peak at x = 0 is at N2 = 642 = 4096. Note we can also see the zeros
at non-zero integer multiples of 1/N for both functions. And the function is getting more
sharply peaked as N gets larger.

19

We can see, then, that |∆N(x)|2 is acting as an approximation to a Dirac delta function,
which is better for higher N . To get the overall normalization, we have to integrate it up,
and compare it to the normalization ∫ ∞

−∞
δ(x) dx = 1 (4.45)

Of course, we don’t actually want to integrate |∆N(x)|2 from −∞ to∞, because it’s periodic,
and we’re bound to get something infinite when we add up the contributions from the infinite
number of peaks. (Actually, we see |∆N(x)|2 is approximating not a single delta function,
but a sum of one delta function at each integer value of x.) So we should just integrate over
one cycle, since ∫ 1/2

−1/2
δ(x) dx = 1 (4.46)

Well, when we do the integral, it turns out that∫ 1/2

−1/2
|∆N(x)|2 dx =

∫ 1/2

−1/2

(
sin πNx

sin πx

)2

dx = N (4.47)

which means that |∆N(x)|2 between −1/2 and 1/2 is an approximation for N times δ(x),
|∆N(x)|2 between 1/2 and 3/2 is an approximation for N times δ(x−1), , |∆N(x)|2 between
−3/2 and 1/2 is an approximation for N times δ(x+ 1), etc. We can summarize this as

|∆N(x)|2 ≈ N
∞∑

s=−∞

δ(x− s) (4.48)

We can now substitute this back into (4.43) and find〈∣∣∣ĥk∣∣∣2〉 =

∫ ∞
−∞
|∆N([fk − f]δt)|2 Sh(f) df ≈ N

∞∑
s=−∞

∫ ∞
−∞

δ([fk − f]δt− s)Sh(f) df

=
N

δt

∞∑
s=−∞

∫ ∞
−∞

δ(f − [fk − s/δt])Sh(f) df =
N

δt

∞∑
s=−∞

Sh(fk − s/δt) .
(4.49)

That means that the correct definition of the periodogram is

Pk :=
δt

N

∣∣∣ĥk∣∣∣2 . (4.50)

Its expectation value is

〈Pk〉 =

∫ ∞
−∞

δt

N
|∆N([fk − f]δt)|2 Sh(f) df ≈

∞∑
s=−∞

Sh(fk − s/δt) (4.51)

There are a few ways in which the periodogram is not quite an ideal estimate of the underlying
PSD Sh(f):

20

1. As noted above, it’s not actually an approximation to the PSD at fk, but to that,
plus the PSD at fk + 1/δt plus the PSD at fk + 2/δt etc. This is the usual aliasing
phenomenon; since 1/δt is twice the Nyquist frequency, we can avoid it by doing some
sort of analog processing of our original time series so that Sh(f) = 0 if |f | is above
the Nyquist frequency, and then confining attention to k between −N/2 and N/2− 1
so that fk is between minus Nyquist and Nyquist. We’ll assume we’ve done that.

2. The function |∆N([fk − f]δt)|2 is not actually the greatest approximation to the Dirac
delta function, because of the “ringing” in the side lobes outside of the main peak. This
means the periodogram estimate at a given frequency will be “contaminated” with data
from nearby frequencies to a greater degree than necessary. This phenomenon is called
spectral leakage. The source of this problem is that by sampling h(t) only from t0 to
t0 + T , we’ve effectively multiplied it by a rectangular window in the time domain

Wr(t) =


0 t < t0

1 t0 ≤ t < T

0 t ≥ T

(4.52)

which means the Fourier transform is the convolution of W̃ (f) with h̃(f). We know
that the Fourier transform of a rectangle is not the nicest thing in the world, so we’re
better off multiplying the date by a window which more smoothly rises from 0 to 1
and then goes back down again, since its Fourier transform will stretch out less in
frequencies. We won’t elaborate on that further right now, but see, e.g., Section 13.4
of Numerical Recipes for more.

3. While Pk has the right expected mean (4.51), its expected variance〈
(Pk − 〈Pk〉)2

〉
=
〈
P 2
k

〉
− 〈Pk〉2 , (4.53)

which is a measure of the square of the typical error associated with the estimate, is
larger than we’d like. We can look at

〈
P 2
k

〉
=

(
δt

N

)2 〈
ĥkĥ

∗
kĥkĥ

∗
k

〉
; (4.54)

now, we can’t actually evaluate this without saying more about the properties of h(t)
than we’ve specified. We’ve talked about the expectation value and the autocorrelation,
but not the full distribution of probabilities of possible values. We’ll soon develop the
machinery to consider such things, but for now, we’ll just state that for some choices
of that underlying distribution〈

ĥkĥ
∗
kĥkĥ

∗
k

〉
∼ 2

〈
ĥkĥ

∗
k

〉〈
ĥkĥ

∗
k

〉
(4.55)

and if that’s the case 〈
P 2
k

〉
∼ 2

(
δt

N

∣∣∣ĥk∣∣∣)2

= 2 〈Pk〉2 (4.56)

21

but that means the expected mean square error is the square of the expectation value
itself: 〈

(Pk − 〈Pk〉)2
〉
∼ 〈Pk〉2 ≈ [S(fk)]

2 (4.57)

so we have an estimate of the power whose typical error is the same size as the estimate
itself!

Note that this is independent of T , which means you don’t get any better of an es-
timate of the PSD of a wide-sense stationary process by including more data in the
periodogram. This is perhaps not so surprising if we recall that the discrete Fourier
transform was developed in the context of deterministic data. Having a longer stretch
of data produces higher resolution in the frequency domain, because δf = 1

T
. So

that means if you construct a periodogram from 50 seconds of data, you get not-very-
accurate PSD estimates at frequencies separated by 0.02 Hz. If you use 200 seconds,
you get PSD estimates at more frequencies, just 0.005 Hz apart, but they’re not any
more accurate; they still have RMS expected errors equal to their expectation values.
However, if the underlying PSD Sh(f) doesn’t vary much as a function of frequency,
then S(43.000 Hz), S(43.005 Hz), S(43.010 Hz) etc may be more or less the same, and
so the corresponding periodograms will be estimates of roughly the same quantity. So
you’d want to average those together to get a more accurate estimate. I.e., you want
to lower the frequency resolution.

You can get a lower frequency resolution by doing your Fourier transforms over a
shorter time, i.e., by breaking up the time T into Nc chunks, each of duration T/Nc,
then doing discrete Fourier transforms over the N = T

Ncδt samples in each chunk. The
periodogram from the αth chunk is then

Pαk =
δt

N

∣∣∣ĥk∣∣∣2 ; (4.58)

its frequency resolution is

δf =
1

N δt
=
Nc
T

. (4.59)

Each periodogram has expected mean

〈Pαk〉 ≈ P (fk) = P (kδf) (4.60)

and variance 〈
P 2
αk

〉
− 〈Pαk〉 ≈ [P (fk)]

2 (4.61)

as before. But we can take the average of all Nc periodograms

P k =
1

Nc

Nc−1∑
α=0

Pαk (4.62)

and as you show on the current homework, this has expected mean〈
P k

〉
= P (fn) (4.63)

22

and variance 〈
P

2

k

〉
−
〈
P k

〉
≈ [P (fk)]

2

Nc
. (4.64)

So the error in the PSD estimation shrinks like 1/
√
Nc. We can get a more accurate

estimate of the PSD by breaking the time up into chunks and averaging, but at the
expense of a coarser frequency resolution. The appropriate tradeoff depends on the
sharpness of the features that we want to resolve in the spectrum.

23

	Fourier Series
	Continuous Fourier Transform
	Convolution
	Properties of the Fourier Transform

	Discrete Fourier Transform
	Nyquist Frequency and Aliasing

	Spectral Analysis of Random Data
	Amplitude Spectrum
	Random Variables
	Random Sequences

	Continuous Random Data
	White Noise
	Colored Noise
	Wide-Sense Stationary Data
	Symmetry Properties of the Auto-Correlation and the PSD
	Power Spectrum Estimation

