Physics A301: Classical Mechanics II

Problem Set 9

Assigned 2004 April 15
Due 2004 April 22

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Practice with Tensors

Consider the vectors $\vec{V}=2 \hat{x}+\hat{y}$ and $\vec{W}=-\hat{y}+2 \hat{z}$. Write the following tensors i) in terms of basis tensors such as $\hat{x} \otimes \hat{x}, \hat{x} \otimes \hat{y}$, etc., and ii) as a matrix

$$
\mathbf{T}=\left(\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right)
$$

where
$\overleftrightarrow{T}=T_{x x} \hat{x} \otimes \hat{x}+T_{x y} \hat{x} \otimes \hat{y}+T_{x z} \hat{x} \otimes \hat{z}+T_{y x} \hat{y} \otimes \hat{x}+T_{y y} \hat{y} \otimes \hat{y}+T_{y z} \hat{y} \otimes \hat{z}+T_{z x} \hat{z} \otimes \hat{x}+T_{z y} \hat{z} \otimes \hat{y}+T_{z z} \hat{z} \otimes \hat{z}$
(As an example, if $\vec{a}=2 \hat{y}$ and $\vec{b}=3 \hat{x}, \overleftrightarrow{Q}=\vec{a} \otimes \vec{b}=6(\hat{y} \otimes \hat{x})$, which means the only non-zero component of \overleftrightarrow{Q} is $Q_{21}=6$, and thus $\mathbf{Q}=\left(\begin{array}{lll}0 & 0 & 0 \\ 6 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.)
a) $\overleftrightarrow{A}=\vec{V} \otimes \vec{V}$;
b) $\overleftrightarrow{B}=\vec{W} \otimes \vec{W}$;
c) $\overleftrightarrow{C}=\vec{V} \otimes \vec{W}$
d) $\overleftrightarrow{D}=\vec{W} \otimes \vec{V}$;
e) $\overleftrightarrow{E}=\frac{\overleftrightarrow{C}+\overleftrightarrow{D}}{2}$;
f) $\overleftrightarrow{F}=\frac{\overleftrightarrow{C}-\overleftrightarrow{D}}{2}$;

2 Tensors and Rotating Coördinates

a) Show that the centrifugal force can be written as a tensor dotted into the position vector:

$$
-m \vec{\omega} \times(\vec{\omega} \times \vec{r})=\overleftrightarrow{M} \cdot \vec{r}
$$

$\underset{\longrightarrow}{\text { First write the tensor }} \overleftrightarrow{M}$ in terms of tensor products of vectors, along with the unit tensor $\overleftrightarrow{1}$, then write its components in terms of the (Cartesian) components of $\vec{\omega}$.
b) Do Symon Chapter 10, Problem 3.

3 Kinetic Energy

Consider a distribution of N point particles all rotating with angular velocity $\vec{\omega}$ relative to a fixed origin.
a) Write the velocity $\dot{\vec{r}}_{k}$ of the k th particle in terms of the angular velocity $\vec{\omega}$ and its position vector \vec{r}_{k}.
b) Write the total kinetic energy

$$
T=\sum_{k=1}^{N} \frac{1}{2} m_{k}\left(\dot{\vec{r}}_{k} \cdot \dot{\vec{r}}_{k}\right)
$$

in terms of $\vec{\omega}$ and the positions of the particles.
c) Prove the vector identity

$$
\begin{equation*}
(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D})=(\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D})-(\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C}) \tag{3.1}
\end{equation*}
$$

by applying the identities

$$
\begin{equation*}
\vec{U} \cdot(\vec{V} \times \vec{W})=(\vec{U} \times \vec{V}) \cdot \vec{W} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{U} \times(\vec{V} \times \vec{W})=\vec{V}(\vec{U} \cdot \vec{W})-\vec{W}(\vec{U} \cdot \vec{V}) \tag{3.3}
\end{equation*}
$$

with suitable choices for \vec{U}, \vec{V}, and \vec{W} each time.
d) Use the identity (3.1) to rewrite T in a form containing no cross products.
e) Use tensor notation to pull $\vec{\omega}$ outside the sum as we did in the derivation of $\vec{L}=\overleftrightarrow{I} \cdot \vec{\omega}$, and write the kinetic energy in the form

$$
\begin{equation*}
T=\vec{\omega} \cdot \overleftrightarrow{A} \cdot \vec{\omega} \tag{3.4}
\end{equation*}
$$

writing the tensor \overleftrightarrow{A} in terms of the masses and position vectors of the particles.
f) How is \overleftrightarrow{A} related to the moment of inertia \overleftrightarrow{I} ?

