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1 Angular Momentum and Angular Velocity

So far we know about scalars (single number) and vectors (which can be written as triples
of components). In rigid body motion, we will want to deal with more complicated objects.

The relationship between the angular momentum ~L and angular velocity ~ω will be described

by a tensor
←→
I .

First recall momentum and velocity. Imagine N particles all moving with the same
velocity ~v. The total momentum is

~P =
N∑
k=1

~pk =
N∑
k=1

mk~v =

(
N∑
k=1

mk

)
︸ ︷︷ ︸

M

~v = M~v (1.1)

The momentum vector equals a scalar mass times the velocity vector. So

• ~P ‖ ~v

• ~P is linear in ~v, i.e., if ~v −→ c~v, then ~P −→ c ~P .

Now, consider N particles all rotating with angular velocity ~ω. From chapter 7, we recall
this means each one has a velocity

~vk = ~̇rk = ~ω × ~rk (1.2)

The total angular momentum is

~L =
N∑
k=1

~rk × ~pk =
N∑
k=1

~rk × (mk~̇rk) =
N∑
k=1

mk

=(~rk·~rk)~ω−~rk(~rk·~ω)︷ ︸︸ ︷
~rk × (~ω × ~rk)

=
N∑
k=1

mk

(
r2k~ω − ~rk (~rk · ~ω)︸ ︷︷ ︸

scalar

) (1.3)

Note that ~L is still linear in ~ω (if ~ω −→ c~ω, then ~L −→ c~L) but the two are not in general
parallel. We’d like to pull ~ω out of the sum like we did with ~v but we don’t yet have a
notation for it.

1.1 Matrix Approach

We can write the components in a matrix:LxLy
Lz

 =
N∑
k=1

mk

r2k
ωxωy
ωz

−
xkyk
zk

 (xkωx + ykωy + zkωz)


=

N∑
k=1

mk

r2k
ωxωy
ωz

−
xkyk
zk

(xk yk zk
)ωxωy

ωz

 (1.4)
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Well, that’s interesting. If we define column vectors (3× 1 matrices)1 L, rk and ω, (1.4) can
be written

L =
N∑
k=1

[
r2kω − rk(rk

Tω)
]

(1.5)

where rk
T is the 1× 3 matrix which is the transpose of rk. But, now, matrix multiplication

is associative, so
rk(rk

Tω) = (rkrk
T)ω (1.6)

where the quantity in parentheses on the right-hand side is the 3× 3 matrix

rkrk
T =

xkxk xkyk xkzk
ykxk ykyk ykzk
zkxk zkyk zkzk

 (1.7)

So . . .

L =
N∑
k=1

mk

[
r2kω − (rkrk

T)ω
]

=

{
N∑
k=1

mk

[
r2k1− rkrk

T
]}

ω = Iω (1.8)

where

1 =

1 0 0
0 1 0
0 0 1

 (1.9)

is the identity matrix and we’ve defined the 3× 3 matrix

I =
N∑
k=1

mk

[
r2k1− rkrk

T
]

=
N∑
k=1

mk

x2k + y2k + z2k 0 0
0 x2k + y2k + z2k 0
0 0 x2k + y2k + z2k

−
xkxk xkyk xkzk
ykxk ykyk ykzk
zkxk zkyk zkzk

 (1.10)

2 Tensors

Of course, we don’t do physics in terms of matrices, but rather in terms of vectors to stress
the geometrical significance.2

The operation
rk

Tω = xkωx + ykωy + zkωz = ~rk · ~ω (2.1)

we understand as a dot (scalar) product. But how about rkrk
T which would produce not a

number but a 3× 3 matrix?

1We use boldfaced letters to describe matrices but not vectors, as defined in the notational handout.
2A matrix v is just a particular set of three numbers which may represent the components of a vector in

one basis. A vector ~v is a geometric object which has meaning independent of any particular choice of basis.
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2.1 The Tensor (dyad) Product

We define a new notation. ~r ⊗ ~r is the Tensor Product of a vector with itself.3

In general, the object ~A⊗ ~B is a “dyad”, which is a kind of tensor. (In general a tensor

is a dyad or a sum of dyads.) It is defined by its dot product with a vector ~C, i.e.,

( ~A⊗ ~B) · ~C = ~A( ~B · ~C) (2.2)

We define another kind of tensor, the identity tensor
←→
1 by its dot product

←→
1 · ~C = ~C.

With this expansion of notation we can write

~L =
←→
I · ~ω (2.3)

where
←→
I =

N∑
k=1

mk(r
2
k

←→
1 − ~rk ⊗ ~rk) (2.4)

is the inertia tensor, a property of the mass distribution.

2.2 Tensor Operation

Given a tensor
←→
T we can define the following operations:

• Multiplication by a scalar a
←→
T

• Addition of two tensors
←→
S +

←→
T

• Dot product with a vector
←→
T · ~A or ~A ·

←→
T (note these are in general not the same.

As a warning, Symon’s equation (10.19) is trying to say that
←→
T · ~C 6= ~C ·

←→
T in general, but

if you only read the equation and not the text around it, it looks like the opposite. As an

explicit example, consider the case where
←→
T = x̂ · ŷ and ~C = x̂. Then

←→
T · ~C = (x̂ · ŷ) · x̂ = x̂���

�:0
(ŷ · x̂) = ~0 (2.5)

but ←→
T · ~C = x̂ · (x̂ · ŷ) = (x̂ · x̂)ŷ = ŷ (2.6)

2.3 Components of a Tensor

Just as any vector can be understood in terms of its components in an orthonormal basis:

~C = Cxx̂+ Cyŷ + Cz ẑ (2.7)

any tensor also has components.

3In Symon’s notation, the two vectors are just written side-by-side, so he calls this rr. This is potentially
confusing notation, since it’s the same as ordinary scalar multiplication, so we will always include the “⊗”
and you’re expected to do likewise on homeworks and exams.
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Start with a dyad:

~A⊗ ~B = (Ax x̂+ Ay ŷ + Az ẑ)⊗ (Bx x̂+By ŷ +Bz ẑ)

= AxBx x̂⊗ x̂+ AxBy x̂⊗ ŷ + AxBz x̂⊗ ẑ
+ AyBx ŷ ⊗ x̂+ AyBy ŷ ⊗ ŷ + AyBz ŷ ⊗ ẑ
+ AzBx ẑ ⊗ x̂+ AzBy ẑ ⊗ ŷ + AzBz ẑ ⊗ ẑ

(2.8)

In general, any tensor can be written
←→
T = Txx x̂⊗ x̂+ Txy x̂⊗ ŷ + Txz x̂⊗ ẑ

+ Tyx ŷ ⊗ x̂+ Tyyŷ ⊗ ŷ + Tyz ŷ ⊗ ẑ
+ Tzx ẑ ⊗ x̂+ Tzy ẑ ⊗ ŷ + Tzz ẑ ⊗ ẑ

(2.9)

2.3.1 Tensor Components and the Matrix Representation

Now we can make the connection to the matrix T in the analogy; if

~X =
←→
T · ~C =

[
(Txx x̂+ Tyx ŷ + Tzx ẑ)⊗ x̂+ (Txy x̂+ Tyy ŷ + Tzy ẑ)⊗ ŷ

+ (Txz x̂+ Tyz ŷ + Tzz ẑ)⊗ ẑ
]
· (Cx x̂+ Cy ŷ + Cz ẑ)

= (TxxCx + TxyCy + TxzCz)x̂+ (TyxCx + TyyCy + TyzCz)ŷ + (TzxCx + TzyCy + TzzCz)ẑ

(2.10)

then

X =

TxxCx + TxyCy + TxzCz
TyxCx + TyyCy + TyzCz
TzxCx + TzyCy + TzzCz

 =

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

CxCy
Cz

 = TC (2.11)

To make the notation a little more compact, define

x1 = x (2.12a)

x2 = y (2.12b)

x3 = z (2.12c)

and

ê1 = x̂ (2.13a)

ê2 = ŷ (2.13b)

ê3 = ẑ (2.13c)

so that

~C =
3∑
i=1

Ciêi (2.14a)

←→
T =

3∑
i=1

3∑
j=1

Tij êi ⊗ êj (2.14b)

←→
T · ~C =

3∑
i=1

3∑
j=1

(TijCj)êi (2.14c)
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Note the repetition of the index j on TijCj; this is the standard pattern for matrix multipli-
cation.

2.4 Inertia Tensor of a Solid Body

Recall our definition of the inertia tensor

←→
I =

N∑
k=1

mk(r
2
k

←→
1 − ~rk ⊗ ~rk) (2.15)

This is for a collection of point masses. For a continuous mass distribution, we make the
usual substitution

N∑
k=1

mk −→
y

ρ(~r) d3V (2.16)

so ←→
I =

y
ρ(~r)

[
r2
←→
1 − ~r ⊗ ~r

]
d3V (2.17)

We can write this in terms of components as

Iij =
y

ρ(~r)
[
r2δij − rirj

]
d3V (2.18)

Where we have defined the incredibly useful notation for the components of the identity
tensor:

←→
1 =

3∑
i=1

3∑
j=1

δij êi ⊗ êj (2.19)

or of the identity matrix:

1 =

δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

 =

1 0 0
0 1 0
0 0 1

 (2.20)

so

δij =

{
1 if i = j

0 if i 6= j
(2.21)

This is called the Kronecker delta and is incredibly useful. Learn it!

3 More Properties of Tensors

3.1 Transpose

A vector ~C can correspond to a column vector C or a row vector CT, e.g., in

~A · ~B = ATB (3.1)
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and
~A⊗ ~B ←→ ABT (3.2)

Given a tensor
←→
T which has a corresponding 3× 3 matrix T, we can take the transpose

←→
T

which is a different 3× 3 matrix and ask what tensor corresponds to that.
In terms of components

Tij
T = Tji (3.3)

so
←→
T

T
=

3∑
i=1

3∑
j=1

Tij
Têi ⊗ êj =

3∑
i=1

3∑
j=1

Tjiêi ⊗ êj =
3∑
i=1

3∑
j=1

Tij êj ⊗ êi︸ ︷︷ ︸
(êj⊗êi)T

(3.4)

where we’ve renamed i to j and vice-versa in the last step.
Another way to get this is to start from

( ~A⊗ ~B)
T

= ~B ⊗ ~A (3.5)

A symmetric tensor obeys
←→
T

T
=
←→
T , i.e., Tij = Tji.

An antisymmetric tensor obeys
←→
T

T
= −
←→
T , i.e., Tij = −Tji.

Examples of symmetric tensors include the identity tensor
←→
1 , the dyad product of a

vector with itself ~A⊗ ~A, and the inertia tensor
←→
I .

As an example of an antisymmetric tensor, start with any vector ~A and define a tensor←→∗A which corresponds to the matrix

∗A =

 0 Az −Ay
−Az 0 Ax
Ay −Ax 0

 (3.6)

Note that

∗A B =

 0 Az −Ay
−Az 0 Ax
Ay −Ax 0

Bx

By

Bz

 =

 AzBy − AyBz

−AzBx + AxBz

AyBx − AxBy

 (3.7)

So ←→∗A · ~B = − ~A× ~B (3.8)

If we count the number of independent components, a symmetric tensor has six and an
antisymmetric tensor had three, the same number as a vector.

Symmetic:

1 4 5
· 2 6
· · 3

 Antisymmetic:

× 1 2
· × 3
· · ×

 (3.9)

So in fact any antisymmetric tensor can be written as the dual of a vector.
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3.2 Change of Basis

The same vector can be written in two different bases:

~v = vx x̂+ vy ŷ + vz ẑ = vx′ x̂
′ + vy′ ŷ

′ + vz′ ẑ
′ =

3∑
i=1

viêi =
3∑
i=1

vi′ ê
′
i (3.10)

The same can be done with a tensor:

←→
T =

3∑
i=1

3∑
j=1

elements of
matrix T︷︸︸︷
Tij êi ⊗ êj =

3∑
i=1

3∑
j=1

elements of
matrix T′︷︸︸︷
Ti′j′ ê′i ⊗ ê′j (3.11)

Note

Tk′`′ = ê′k ·
←→
T · ê′` =

3∑
i=1

3∑
j=1

(ê′k · êi)︸ ︷︷ ︸
Aki

Tij (êj · ê′`)︸ ︷︷ ︸
A`j=Aj`

T

(3.12)

This is equivalent to the matrix expression

T′ = ATAT (3.13)

Note
←→
1 =

3∑
i=1

êi ⊗ êi =
3∑
i=1

ê′i ⊗ ê′i (3.14)

is the same in any orthonormal basis because the transformation between orthonormal bases
obeys

A AT = 1 (3.15)

i.e.,
AikAjk = δij (3.16)

We call A an “orthogonal” matrix.

3.2.1 Diagonalization of a Symmetric Tensor

Claim: Given any symmetric tensor
←→
T , there is an orthonormal basis {ûi|i = 1 . . . 3} such

that we can write

←→
T =

3∑
i=1

Ti ûi ⊗ ûi = T1 û1 ⊗ û1 + T2 û2 ⊗ û2 + T3 û3 ⊗ û3 (3.17)

This is because the corresponding symmetric matrix can be diagonalized.
Recall the eigenvalue problem: for which column vectors v and numbers λ does Tv = λv?
First, write it as

(T− λ1)v = 0 (3.18)

If T− λ1 is invertible, the solution is

v = (T− λ1)−10 = 0 (3.19)

8



so there is only a non-trivial solution if det(T− λ1) = 0:∣∣∣∣∣∣
T11 − λ T12 T13
T21 T22 − λ T23
T31 T32 T33 − λ

∣∣∣∣∣∣ = 0 (3.20)

Since the left-hand side is a cubic polynomial in λ, there are (up to) three eigenvalues.

• If T is real and symmetric, its eigenvalues are all real numbers.

• If T is real and symmetric, eigenvectors corresponding to different eigenvalues are
perpendicular.

• If multiple eigenvectors have the same eigenvalue, any linear combination of them is
also an eigenvector with the same eigenvalue:

T(av1 + bv2) = aλv1 + bλv2 = λ(av1 + bv2) (3.21)

So (for a symmetric tensor
←→
T ) we can always choose an orthonormal basis of eigenvectors.

ûi = ~vi
|~vi| is also an eigenvector; call the eigenvalue Ti, so that

←→
T · ûi = Tiûi (3.22)

And we can find the components in the basis {ûi|i = 1, 2, 3} as

ûi ·
←→
T · ûj = (ûi · ûj)Tj = δijTj (3.23)

So ←→
T = T1û1 ⊗ û1 + T2û2 ⊗ û2 + T3û3 ⊗ û3 (3.24)

This gives us the beginnings of a geometric interpretation of a tensor
←→
T , at least if that

tensor happens to be symmetric. A symmetric tensor defines a preferred set of orthogonal
axes, with (not necessarily positive) numbers associated with each one.

There are different possibilities:

• All three eigenvalues {T1, T2, T3} are different. In that case the basis {û1, û2, û3} is
unique (up to cyclic reörderings of the basis vectors).

• Two eigenvalues are equal (T1 6= T2 = T3). Then û1 is unique (up to a sign), and û2
and û3 form an orthonormal basis for the plane perpendicular to û1.

• All three eigenvalues are equal (T1 = T2 = T3). Then any vector is an eigenvector of
←→
T and the tensor is diagonal in any orthonormal basis. Symon calls this a “constant
tensor”, although a more appropriate term would be “isotropic”. In this case, we can

write
←→
T = T1

←→
1 without reference to any basis.
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4 The Inertia Tensor

4.1 Review: Characterization of a Symmetric Tensor

Last time we saw any symmetric tensor
←→
T can be written

←→
T = T1û1 ⊗ û1 + T2û2 ⊗ û2 + T3û3 ⊗ û3 (4.1)

for some orthonormal basis {ûi} and set of eigenvalues {Ti} which are “unique”. So this
gives us a physical picture of a symmetric tensor: three perpendicular axes with numbers
attached. We could visualize it by drawing each axis as a double-headed arrow of the
appropriate length:

-
�6

?

�
�
�
�3

�
�
�
�+

(This doesn’t work so well if any of the eigenvalues are negative.)

Different possibilities

• {T1, T2, T3} all different

−→ unit vectors {û1, û2, û3} is unique (up to signs). In the case of the inertia tensor
←→
I

these are called “principal axes of inertia”; they are usually associated with symmetries
and often conveniently chosen as coördinate axes.

• T1 6= T2 = T3
−→ û1 unique (up to a sign); û2 and û3 can be any two perpendicular unit vectors in
the plane perpendicular to û1.

• T1 = T2 = T3←→
T = T1

←→
1 . Then the tensor is isotropic (Symon calls it “constant”). Any vector is

an eigenvector, so any orthonormal basis diagonalizes
←→
T .

4.2 Inertia Tensor in Detail

For a discrete mass distribution (collection of point masses)

←→
I =

N∑
k=1

mk(
←→
1 r2k − ~rk ⊗ ~rk) (4.2)

For a continuous mass distribution,

←→
I =

y
ρ(~r)(

←→
1 r2 − ~r ⊗ ~r) d3V (4.3)
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To examine the components in a particular basis, consider that

1r2 − rrT =

x2 + y2 + z2 0 0
0 x2 + y2 + z2 0
0 0 x2 + y2 + z2

−
xx xy xz
yx yy yz
zx zy zz


=

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 (4.4)

so

Ixx =
y

ρ(~r) (y2 + z2) d3V (4.5a)

Ixy = Iyx = −
y

ρ(~r)xy d3V (4.5b)

etc.

4.3 Example: Ellipsoid of Constant Density

As an example of how to calculate the components (4.5) explicitly, consider an ellipsoid E
defined by the equation

x2

a2
+
y2

b2
+
z2

c2
≤ 1 (4.6)

with constant density ρ. Now, Cartesian coördinates are not exactly suited to integrating
over an ellipsoid, nor are standard spherical coördinates. But if we uses as our integration
variables {σ, ϑ, ϕ} defined by

x = aσ sinϑ cosϕ (4.7a)

y = bσ sinϑ sinϕ (4.7b)

z = cσ cosϑ (4.7c)

Then the equation (4.6) defining the ellipsoid becomes just

σ2 ≤ 1 (4.8)

and to cover the whole ellipsoid, we just need the limits of integration

0 ≤ σ ≤ 1 (4.9a)

0 ≤ ϑ ≤ π (4.9b)

0 ≤ ϕ < 2π (4.9c)

The volume element is easy to see by analogy to spherical coördinates:

d3V = dx dy dz = abc σ2 sinϑ dσ dϑ dϕ (4.10)

It’ll turn out that the components of the inertia tensor are more easily written in terms
of the ellipsoid’s mass than its density, so first we calculate the mass:

M = ρabc

∫ 2π

0

dϕ︸ ︷︷ ︸
2π

∫ π

0

sinϑ dϑ︸ ︷︷ ︸∫ 1
−1 dµ=2

∫ 1

0

σ2 dσ︸ ︷︷ ︸
1
3

=
4πabc

3
ρ (4.11)
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It’s not hard to show that the off-diagonal components of the inertia tensor vanish in this
case, since y

E

xy dx dy dz =
y

E

yz dx dy dz =
y

E

xz dx dy dz = 0 (4.12)

This is because the region of integration is symmetric under inversion x→ −x. This means
that the integral of any quantity odd in x over this region vanishes, which takes care of xy
and xz. Similarly, it’s also symmetric under y → −y, which means the integral of a function
odd in y, such as yz, over the region vanishes as well.

To get the diagonal components, we need
t

E
x2 dx dy dz,

t

E
y2 dx dy dz, and

t

E
z2 dx dy dz.

The last is easiest to calculate explicitly in these coördinates:

y

E

z2 dx dy dz = abc3
∫ 2π

0

dϕ︸ ︷︷ ︸
2π

∫ π

0

cos2 ϑ sinϑ dϑ︸ ︷︷ ︸∫ 1
−1 µ

2dµ= 2
3

∫ 1

0

σ4 dσ︸ ︷︷ ︸
1
5

=
4πabc

15
c2 =

1

ρ

M

5
c2 (4.13)

The other two integrals can be calculated explicitly or by analogy, since everything in the
problem is the same if we permute x→ y → z → x and, a→ b→ c→ a:

y

E

x2 dx dy dz =
1

ρ

M

5
a2 (4.14a)

y

E

y2 dx dy dz =
1

ρ

M

5
b2 (4.14b)

We can now evaluate all the necessary integrals:

Ixx =
y

E

ρ(y2 + z2) dx dy dz =
M

5
(b2 + c2) (4.15a)

Iyy =
y

E

ρ(x2 + z2) dx dy dz =
M

5
(a2 + c2) (4.15b)

Izz =
y

E

ρ(x2 + y2) dx dy dz =
M

5
(a2 + b2) (4.15c)

so, using this and the vanishing of the diagonal elements as explained above,Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 =

M
5

(b2 + c2) 0 0
0 M

5
(a2 + c2) 0

0 0 M
5

(a2 + b2)

 (4.16)

4.4 Notes on the Inertia Tensor

Inertia tensor ←→
I =

y
(
←→
1 r2 − ~r ⊗ ~r) ρ(~r) d3V (4.17)
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Note, if a rigid body rotates in space, the distribution of mass will change, so its inertia tensor
will change, but in a rotating reference frame which moves with the body, the components
will stay the same. What’s happening is that the body axes are changing but the moments
of inertia about those axes are remaining the same. If the {~e ′i} basis rotates with the body,

then
←→
I =

3∑
i=1

Iiûi ⊗ ûi =
3∑
i=1

I ′ii~e
′
i ⊗ ~e ′i (4.18)

so I ′ij = δijIi in this special basis.

4.4.1 Inertia Tensor Relative to Different Origins

Also note that because
←→
I is built from the position vector ~r it depends on the choice of

origin.

~r points to some position in the body; it’s integrated over.

In particular, we can compare
←→
IO measured relative to some origin O with

←→
IG measured

relevant to the center of mass G. The position vectors relative to the two origins are related
by

~rO = ~rG − ~R (4.19)

where ~R is the center of mass position vector (relative to O). For compactness of notation,
we refer to ~rO as ~r and ~rG as ~r ′ so

~r ′ = ~r − ~R (4.20)

The relationship between the two inertia tensors is simplified somewhat by the fact that
since

~R =

t
~r ρ(~r) d3V

M
(4.21)

we have
y

~r ′ ρ(~r) d3V =
y

~r ρ(~r) d3V − ~R
y

ρ(~r) d3V︸ ︷︷ ︸
M

= M ~R−M ~R = ~0 (4.22)

Now,

←→
IO =

y [←→
1 (~r · ~r)− ~r ⊗ ~r

]
ρ(~r) d3V

=
y [←→

1 (~R + ~r ′) · (~R + ~r ′)− (~R + ~r ′)⊗ (~R + ~r ′)
]
ρ(~r) d3V

=
y [

(~R · ~R)
←→
1 − ~R⊗ ~R

]
ρ(~r) d3V +

y [
(~R · ~r ′)←→1 − ~R⊗ ~r ′

]
ρ(~r) d3V

+
y [

(~r ′ · ~R)
←→
1 − ~r ′ ⊗ ~R

]
ρ(~r) d3V +

y [
(~r ′ · ~r ′)←→1 − ~r ′ ⊗ ~r ′

]
ρ(~r) d3V

(4.23)
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In the first term the constant vector ~R can be pulled out of the integral to give

y [
(~R · ~R)

←→
1 − ~R⊗ ~R

]
ρ(~r) d3V =

[
(~R · ~R)

←→
1 − ~R⊗ ~R

]y
ρ(~r) d3V︸ ︷︷ ︸
M

(4.24)

The cross terms both vanish thanks to (4.22); for example

y [
(~R · ~r ′)←→1 − ~R⊗ ~r ′

]
ρ(~r) d3V = ~R ·

��
���

���
��:

~0[y
~r ′ ρ(~r) d3V

]←→
1 − ~R⊗

��
���

���
��:

~0[y
~r ′ ρ(~r) d3V

]
= ~0

(4.25)

The last term is just
←→
IG , since integrating ~r over the whole solid accomplishes the same think

as integrating ~r ′ over the whole solid.
So in the end ←→

IO =
←→
IG +M

[
(~R · ~R)

←→
1 − ~R⊗ ~R

]
(4.26)

I.e., a body’s inertia tensor with respect to any origin is its inertia tensor with respect to its
center of mass, plus the inertia tensor with respect to the origin of a pointlike object of a
mass equal to the body’s total mass located at the body’s center of mass.

A Appendix: Correspondence to Class Lectures

Date Sections Pages Topics
2004 March 30 1–2.3 2–5 Tensors: Derivation
2004 April 1 2.3.1–2.4 5–6 Tensors: More properties
2004 April 20 3 6–9 Tensors: Still more properties
2004 April 22 4.1–4.3 10–12 The Inertia Tensor
2004 April 27 4.4–4.4.1 12–14 Notes on the Inertia Tensor
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