Vector and Tensor Notation Crib Sheet

Physics A301*

Spring 2004

Object	Symon's Notation	Our Notation (typeset)	Our Notation (handwritten)
Vector	A	\vec{A}	\vec{A}
Tensor	T	\overleftrightarrow{T}	\overleftrightarrow{T}
Matrix	T	\mathbf{T}	T
Dyad	AB	$\vec{A} \otimes \vec{B}$	$\vec{A} \otimes \vec{B}$

Note that we do not treat a tensor and the corresponding matrix as interchangeable within the same equation: the crossed-out equation in $\mathcal{T}=\boldsymbol{T}$ is not only not correct, it's meaningless, as it relates two different type of objects.

Given a coördinate system, there is a one-to-one correspondence between a tensor and the matrix containing its components. If we're dealing with two different sets of axes, the same tensor is represented by two different matrices. Explicitly,

$$
\begin{aligned}
\overleftrightarrow{T}= & T_{x x}(\hat{x} \otimes \hat{x})+T_{x y}(\hat{x} \otimes \hat{y})+T_{x z}(\hat{x} \otimes \hat{z})+T_{y x}(\hat{y} \otimes \hat{x})+T_{y y}(\hat{y} \otimes \hat{y})+T_{y z}(\hat{y} \otimes \hat{z}) \\
& +T_{z x}(\hat{z} \otimes \hat{x})+T_{z y}(\hat{z} \otimes \hat{y})+T_{z z}(\hat{z} \otimes \hat{z}) \\
= & T_{x x}^{\prime}\left(\hat{x}^{\prime} \otimes \hat{x}^{\prime}\right)+T_{x y}^{\prime}\left(\hat{x}^{\prime} \otimes \hat{y}^{\prime}\right)+T_{x z}^{\prime}\left(\hat{x}^{\prime} \otimes \hat{z}^{\prime}\right)+T_{y x}^{\prime}\left(\hat{y}^{\prime} \otimes \hat{x}^{\prime}\right)+T_{y y}^{\prime}\left(\hat{y}^{\prime} \otimes \hat{y}^{\prime}\right)+T_{y z}^{\prime}\left(\hat{y}^{\prime} \otimes \hat{z}^{\prime}\right) \\
& +T_{z x}^{\prime}\left(\hat{z}^{\prime} \otimes \hat{x}^{\prime}\right)+T_{z y}^{\prime}\left(\hat{z}^{\prime} \otimes \hat{y}^{\prime}\right)+T_{z z}^{\prime}\left(\hat{z}^{\prime} \otimes \hat{z}^{\prime}\right)
\end{aligned}
$$

is represented by the matrix

$$
\mathbf{T}=\left(\begin{array}{lll}
T_{x x} & T_{x y} & T_{x z} \\
T_{y x} & T_{y y} & T_{y z} \\
T_{z x} & T_{z y} & T_{z z}
\end{array}\right)
$$

in the basis $\{\hat{x}, \hat{y}, \hat{z}\}$ and the matrix

$$
\mathbf{T}^{\prime}=\left(\begin{array}{ccc}
T_{x x}^{\prime} & T_{x y}^{\prime} & T_{x z}^{\prime} \\
T_{y x}^{\prime} & T_{y y}^{\prime} & T_{y z}^{\prime} \\
T_{z x}^{\prime} & T_{z y}^{\prime} & T_{z z}^{\prime}
\end{array}\right)
$$

in the basis $\left\{\hat{x}^{\prime}, \hat{y}^{\prime}, \hat{z}^{\prime}\right\}$.

[^0]
[^0]: *Copyright 2004, John T. Whelan, and all that

