Physics A300: Classical Mechanics I

Problem Set 9

Assigned 2002 November 18 Due 2002 November 25

1 Properties of a Mass Distribution

Consider four identical particles, each of mass m, each moving in counter-clockwise around a circle of radius a in the x-y plane, centered at the origin, at constant angular velocity $\Omega > 0$, with their positions evenly spaced around the circle.

- a) Sketch this situation, and label the particles 1 through 4.
- b) Write the position vectors $\vec{r}_1(t)$, $\vec{r}_2(t)$, $\vec{r}_3(t)$, and $\vec{r}_4(t)$ if particle 1 crosses the positive x axis at t = 0. (Assume the orbital plane is z = 0.)
- c) Calculate the velocities $\dot{\vec{r}}_1(t)$, $\dot{\vec{r}}_2(t)$, $\dot{\vec{r}}_3(t)$, and $\dot{\vec{r}}_4(t)$.
- d) Calculate explicitly
 - i) the total mass M;
 - ii) the total momentum \vec{P} ;
 - iii) the position vector \vec{R} of the center of mass;
 - iv) the total angular momentum \vec{L} ;
 - v) the total kinetic energy T

You don't need to calculate any components of vectors which vanish as a result of the motion being confined to a plane, but you should calculate all other components of the relative vectors, even if they turn out to be zero due to symmetry.

2 Decomposition of Angular Momentum

- a) Substitute Symon's (4.19), the definition of angular momentum of particle k about a point \mathcal{Q} , into Symon's (4.23), the total angular momentum of a system about \mathcal{Q} . Expand the cross product $(\vec{r}_k \vec{r}_{\mathcal{Q}}) \times (\dot{\vec{r}}_k \dot{\vec{r}}_{\mathcal{Q}})$ appearing inside the sum in the resulting expression for $\vec{L}_{\mathcal{Q}}$ and use the definitions of the total mass M, center of mass \vec{R} , and total momentum \vec{P} of the system to simplify your expression for $\vec{L}_{\mathcal{Q}}$ so that only one of the four terms still explicitly contains the sum over k, and the rest only contain M, \vec{R} , \vec{P} , $\vec{r}_{\mathcal{Q}}$, and $\dot{\vec{r}}_{\mathcal{Q}}$.
- b) Simplify the result of part a) in the special case where the point Q is the origin of coördiates $(\vec{r}_Q = \vec{0})$. Call this the total angular momentum \vec{L} .

- c) Simplify the result of part a) in the special case where the point Q is the center of mass $(\vec{r}_Q = \vec{R})$. Call this the angular momentum \vec{L}_{com} relative to the center of mass.
- d) Use the results of parts b) and c) to find an expression for the total angular momentum \vec{L} in terms of \vec{R} , \vec{P} , and \vec{L}_{com} .

3 Elastic Collision

a) Consider a particle of mass m moving in the positive x direction at speed v towards another

particle of mass m. (The figure labelled "Pre-collision" in the diagram above.) What are the total momentum \vec{P}_I and total kinetic energy T_I of the system in terms of m and v?

- b) Suppose the two particles have a collision, with the result that the first particle is moving in the x-y plane, at an angle of 45° above the positive x axis, with a speed v_1 , and the second particle is moving in the x-y plane, at an angle of θ below the positive x axis. (The figure labelled "Post-collision" in the diagram above.) What are the total momentum \vec{P}_F and total kinetic energy T_F of the system in terms of m, v_1 , v_2 , and θ ? (Be sure to evaluate any trig functions of the known angle 45°.)
- c) If the collision was elastic, and no other forces were involved aside from the short-range forces between the colliding particles, use conservation of momentum and energy to write three equations in the three unknowns v_1 , v_2 , and θ and solve for these in terms of m and v.
- d) Consider the "Pre-collision" picture in a reference frame moving in the positive x direction at speed v/2, so that the two particles have velocities

$$\vec{v}_{1I}' = \vec{v}_{1I} - \hat{x}\frac{v}{2} \tag{3.1a}$$

$$\vec{v}_{2I}' = \vec{v}_{2I} - \hat{x}\frac{v}{2} \tag{3.1b}$$

- i) Sketch the "Pre-collision" picture in this reference frame by working out the speeds and directions corresponding to the velocity vectors (3.1).
- ii) Find the total momentum \vec{P}'_I and total kinetic energy T'_I in this reference frame.
- e) Consider the "Post-collision" picture in a reference frame moving in the positive x direction at speed v/2, so that the two particles have velocities

$$\vec{v}_{1F}' = \vec{v}_{1F} - \hat{x}\frac{v}{2} \tag{3.2a}$$

$$\vec{v}_{2F}' = \vec{v}_{2F} - \hat{x}\frac{v}{2} \tag{3.2b}$$

- i) Sketch the "Post-collision" picture in this reference frame by working out the speeds and directions corresponding to the velocity vectors (3.2).
- ii) Find the total momentum \vec{P}'_F and total kinetic energy T'_F in this reference frame, and verify that energy and momentum are still conserved.