# Physics A300: Classical Mechanics I 

Problem Set 9

Assigned 2002 November 18
Due 2002 November 25

## 1 Properties of a Mass Distribution

Consider four identical particles, each of mass $m$, each moving in counter-clockwise around a circle of radius $a$ in the $x-y$ plane, centered at the origin, at constant angular velocity $\Omega>0$, with their positions evenly spaced around the circle.
a) Sketch this situation, and label the particles 1 through 4 .
b) Write the position vectors $\vec{r}_{1}(t), \vec{r}_{2}(t), \vec{r}_{3}(t)$, and $\vec{r}_{4}(t)$ if particle 1 crosses the positive $x$ axis at $t=0$. (Assume the orbital plane is $z=0$.)
c) Calculate the velocities $\dot{\vec{r}}_{1}(t), \dot{\vec{r}}_{2}(t), \dot{\vec{r}}_{3}(t)$, and $\dot{\vec{r}}_{4}(t)$.
d) Calculate explicitly
i) the total mass $M$;
ii) the total momentum $\vec{P}$;
iii) the position vector $\vec{R}$ of the center of mass;
iv) the total angular momentum $\vec{L}$;
v) the total kinetic energy $T$

You don't need to calculate any components of vectors which vanish as a result of the motion being confined to a plane, but you should calculate all other components of the relative vectors, even if they turn out to be zero due to symmetry.

## 2 Decomposition of Angular Momentum

a) Substitute Symon's (4.19), the definition of angular momentum of particle $k$ about a point $\mathcal{Q}$, into Symon's (4.23), the total angular momentum of a system about $\mathcal{Q}$. Expand the cross product $\left(\vec{r}_{k}-\vec{r}_{\mathcal{Q}}\right) \times\left(\dot{\vec{r}}_{k}-\dot{\vec{r}}_{\mathcal{Q}}\right)$ appearing inside the sum in the resulting expression for $\vec{L}_{\mathcal{Q}}$ and use the definitions of the total mass $M$, center of mass $\vec{R}$, and total momentum $\vec{P}$ of the system to simplify your expression for $\vec{L}_{\mathcal{Q}}$ so that only one of the four terms still explicitly contains the sum over $k$, and the rest only contain $M, \vec{R}, \vec{P}, \vec{r}_{\mathcal{Q}}$, and $\dot{\vec{r}}_{\mathcal{Q}}$.
b) Simplify the result of part a) in the special case where the point $\mathcal{Q}$ is the origin of coördiates $\left(\vec{r}_{\mathcal{Q}}=\overrightarrow{0}\right)$. Call this the total angular momentum $\vec{L}$.
c) Simplify the result of part a) in the special case where the point $\mathcal{Q}$ is the center of mass $\left(\vec{r}_{\mathcal{Q}}=\vec{R}\right)$. Call this the angular momentum $\vec{L}_{\text {com }}$ relative to the center of mass.
d) Use the results of parts b) and c) to find an expression for the total angular momentum $\vec{L}$ in terms of $\vec{R}, \vec{P}$, and $\vec{L}_{\text {com }}$.

## 3 Elastic Collision


a) Consider a particle of mass $m$ moving in the positive $x$ direction at speed $v$ towards another particle of mass $m$. (The figure labelled "Pre-collision" in the diagram above.) What are the total momentum $\vec{P}_{I}$ and total kinetic energy $T_{I}$ of the system in terms of $m$ and $v$ ?
b) Suppose the two particles have a collision, with the result that the first particle is moving in the $x-y$ plane, at an angle of $45^{\circ}$ above the positive $x$ axis, with a speed $v_{1}$, and the second particle is moving in the $x-y$ plane, at an angle of $\theta$ below the positive $x$ axis. (The figure labelled "Post-collision" in the diagram above.) What are the total momentum $\vec{P}_{F}$ and total kinetic energy $T_{F}$ of the system in terms of $m, v_{1}, v_{2}$, and $\theta$ ? (Be sure to evaluate any trig functions of the known angle $45^{\circ}$.)
c) If the collision was elastic, and no other forces were involved aside from the short-range forces between the colliding particles, use conservation of momentum and energy to write three equations in the three unknowns $v_{1}, v_{2}$, and $\theta$ and solve for these in terms of $m$ and $v$.
d) Consider the "Pre-collision" picture in a reference frame moving in the positive $x$ direction at speed $v / 2$, so that the two particles have velocities

$$
\begin{align*}
\vec{v}_{1 I}^{\prime} & =\vec{v}_{1 I}-\hat{x} \frac{v}{2}  \tag{3.1a}\\
\vec{v}_{2 I}^{\prime} & =\vec{v}_{2 I}-\hat{x} \frac{v}{2} \tag{3.1b}
\end{align*}
$$

i) Sketch the "Pre-collision" picture in this reference frame by working out the speeds and directions corresponding to the velocity vectors (3.1).
ii) Find the total momentum $\vec{P}_{I}^{\prime}$ and total kinetic energy $T_{I}^{\prime}$ in this reference frame.
e) Consider the "Post-collision" picture in a reference frame moving in the positive $x$ direction at speed $v / 2$, so that the two particles have velocities

$$
\begin{align*}
\vec{v}_{1 F}^{\prime} & =\vec{v}_{1 F}-\hat{x} \frac{v}{2}  \tag{3.2a}\\
\vec{v}_{2 F}^{\prime} & =\vec{v}_{2 F}-\hat{x} \frac{v}{2} \tag{3.2~b}
\end{align*}
$$

i) Sketch the "Post-collision" picture in this reference frame by working out the speeds and directions corresponding to the velocity vectors (3.2).
ii) Find the total momentum $\vec{P}_{F}^{\prime}$ and total kinetic energy $T_{F}^{\prime}$ in this reference frame, and verify that energy and momentum are still conserved.

