Physics A300: Classical Mechanics I

Problem Set 8

Assigned 2002 November 11
Due 2002 November 18

1 Central Force with Quadratic Potential

Consider a potential $V(r)=\frac{1}{2} k r^{2}$.
a) For a particle of mass m moving in this potential, with angular momentum L, construct the effective potential $V_{\text {eff }}(r)$ and sketch a plot of $V_{\text {eff }}(r)$ versus r.
b) For what values of total energy are there two turning points $r_{\min }$ and $r_{\max }$? Find $r_{\text {min }}$ and $r_{\text {max }}$ in terms of the energy E.
c) Use the function $V_{\text {eff }}(r)$ to find the radius $r_{\text {circ }}$ of a circular orbit with angular momentum L. What is the total energy $E_{\text {circ }}$ of this orbit?
d) For an energy only slightly larger than $E_{\text {circ }}$, calculate the frequency ω_{R} of the small radial oscillations about $r_{\text {circ }}$. Calculate the angular frequency ω_{Φ} of the angular oscillations when $r \approx$ $r_{\text {circ }}$ and compare the two frequencies quantitatively. (Both frequencies should be expressed in terms of the parameters k, m, and L, and not in terms of e.g., $r_{\text {circ }}$ or $E_{\text {circ. }}$.)

2 Conic Sections

Demonstrate that the orbit

$$
\begin{equation*}
r(1+\varepsilon \cos \phi)=\alpha \tag{2.1}
\end{equation*}
$$

with constants $\alpha>0$ and $\varepsilon \geq 0$ is indeed a conic section with eccentricity ε, semimajor axis $\alpha /\left(1-\varepsilon^{2}\right)$, and one focus at $r=0$ as follows:
a) Consider the points $\mathcal{P} \equiv(x, y), \mathcal{O} \equiv(0,0), \mathcal{F}_{ \pm} \equiv(\pm 2 c, 0)$, (where $\left.c>0\right)$ and the line $\mathcal{L} \equiv x=2 p>0$. Calculate the following distances in Cartesian coördinates, then convert your results into the standard polar coördinates using $x=r \cos \phi$ and $y=r \sin \phi$, simplifying as much as possible.
i) the length $d_{\mathcal{O P}}$ of the straight line segment from \mathcal{O} to \mathcal{P}
ii) the length $d_{\mathcal{F}_{ \pm} \mathcal{P}}$ of the straight line segment from $\mathcal{F}_{ \pm}$to \mathcal{P}
iii) the distance $d_{\mathcal{L P}}$ between the point \mathcal{P} and the line \mathcal{L}
b) A circle of radius a centered at \mathcal{O} is the set of all points a distance a from \mathcal{O} :

$$
\begin{equation*}
d_{\mathcal{O P}}=a \tag{2.2}
\end{equation*}
$$

Show that when $\varepsilon=0,(2.1)$ is equivalent to (2.2) for a suitable choice of a, and find this a in terms of α.
c) An ellipse of semimajor axis $a>0$ with foci at \mathcal{F}_{-}and \mathcal{O} is the set of all points such that the sum of their distances from the two foci is $2 a$:

$$
\begin{equation*}
d_{\mathcal{F}_{-} \mathcal{P}}+d_{\mathcal{O P}}=2 a \tag{2.3}
\end{equation*}
$$

Show that when $0<\varepsilon<1$, (2.1) is equivalent to (2.3) for a suitable choice of a and c, and find these values in terms of α and ε. (Hint: this is easiest if you solve (2.3) for $d_{\mathcal{F}_{-} \mathcal{P}}$, square it, and set it equal to the square of the result from part a), using (2.1) to eliminate $\cos \phi$, and requiring equality for any value of r.)
d) A parabola with focus \mathcal{O} and directrix \mathcal{L} is the set of all points equidistant from \mathcal{O} and \mathcal{L} :

$$
\begin{equation*}
d_{\mathcal{L P}}=d_{\mathcal{O P}} \tag{2.4}
\end{equation*}
$$

Show that when $\varepsilon=1,(2.1)$ is equivalent to (2.4) for a suitable choice of p, and find this p in terms of α.
e) The left branch of a hyperbola of semimajor axis $a<0$ with foci at \mathcal{O} and \mathcal{F}_{+}is the set of all points such that the difference of their distances from the two foci is $-2 a>0$:

$$
\begin{equation*}
d_{\mathcal{F}_{+} \mathcal{P}}-d_{\mathcal{O P}}=-2 a \tag{2.5}
\end{equation*}
$$

Show that when $\varepsilon>1$, (2.1) is equivalent to (2.5) for a suitable choice of a and c, and find these values in terms of α and ε. (Hint: this is easiest if you solve (2.5) for $d_{\mathcal{F}_{+} \mathcal{P}}$, square it, and set it equal to the square of the result from part a), using (2.1) to eliminate $\cos \phi$, and requiring equality for any value of r.)

3 Circular Orbits in a Gravitational Field

Note: None of your answers to this problem should involve the constant K; you should use the relationship $K=-G M m$ to express them in terms of the masses of the attracting body and the test particle.

Consider a test particle of mass m moving in a circular orbit of radius R under the gravitational attraction of a body of mass M fixed at the center of the circle.
a) Use Kepler's third law to calculate the orbital speed v as a function of R.
b) Express the total energy E and angular momentum L as functions of the radius R of the orbit (and not of each other or v).
c) Use the result of part a) to find the kinetic energy K as a function of R.
d) Write the potential energy $V(R)$ and verify that $T+V=E$.
e) Suppose we reduce the orbital energy from a satellite in such a way that it changes from one circular orbit to another. Do the following quantities increase or decrease?
i) orbital radius;
ii) orbital speed;
iii) orbital period
iv) kinetic energy;
v) potential energy;
vi) orbital angular momentum

