Physics A300: Classical Mechanics I

Problem Set 4

Assigned 2002 September 23 Due 2002 September 30

Show your work on all problems!

1 Overdamped Oscillations

By analogy to the formulas

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
 $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$

which can be derived from the Euler relation, one defines the hyperbolic trigonometric functions

$$\sinh \eta = \frac{e^{\eta} - e^{-\eta}}{2} \qquad \cosh \eta = \frac{e^{\eta} + e^{-\eta}}{2}$$

- a) Using the definitions above, derive (i.e., do not just look up) expressions for $\sin i\eta$ and $\cos i\eta$ in terms of $\sinh \eta$ and $\cosh \eta$.
- b) Show that the general overdamped solution given in equation (2.140) of Symon can be rewritten as

$$x(t) = e^{-\gamma t} (B_c \cosh \omega_h t + B_s \sinh \omega_h t) \tag{1}$$

where $\omega_h = \sqrt{\gamma^2 - \omega_0^2}$. Find the values of B_c , B_s in terms of C_1 , and C_2 .

c) By extending the definition (2.129) to the case where $\gamma > \omega_0$ as $\omega_1 = i\omega_h$ (where again $\omega_h = \sqrt{\gamma^2 - \omega_0^2}$) show that the general underdamped solution (2.134) is equivalent to (1) above and determine the resulting B_c and B_s in terms of B_1 and B_2 . What conditions must B_1 and B_2 satisfy for x(t) to be real in this case?

2 Critically Damped Oscillations

- a) Consider a damped harmonic oscillator with $x(0) = x_0$ and $\dot{x}(0) = v_0$. Find the B_1 and B_2 needed to make the general solution (2.134) in Symon satisfy these initial conditions, and use this to write x(t) as a function of only x_0 , v_0 , t, γ , and ω_1 . Simplify your answer as much as possible.
- b) Take the limit $\gamma \to \omega_0$, i.e., $\omega_1 \to 0$, of your result to the previous part, and thereby obtain an expression for x(t) in terms of x_0 , v_0 , and γ in the critically-damped limit which does not contain ω_1 . Your solution should agree with equation (2.146) of Symon for a suitable choice of C_1 and C_2 .

3 Driven Oscillations

Consider the steady-state solution

$$x(t) = A_s \cos(\omega t + \theta_s)$$

to a forced, damped harmonic oscillator.

- a) Calculate the work done on the oscillator per unit time per unit mass (because $W = \int F dx$, work per unit time-i.e., power-is Fv) by the three forces in the problem:
 - i) $F_{\text{Hooke}} = -m\omega_0^2 x$
 - ii) $F_{\text{damping}} = -2m\gamma \dot{x}$
 - iii) $F_{\text{driving}} = F_0 \cos(\omega t + \theta_0)$

This is the net power per unit mass deposited into the oscillator by each force.

b) Calculate the net work per unit mass done by each individual force over a complete cycle of the oscillator. Show *explicitly* that no net work is done by the restoring force F_{Hooke} and that the amount of energy dissipated by the retarding force F_{damping} is equal to the amount of work done by the driving force F_{driving} . Calculate the frequency ω_{max} at which this energy transfer per cycle is greatest, for a fixed driving amplitude F_0 .

4 Initial Conditions and Transients

Symon Chapter Two, Problem 50