Physics A300: Classical Mechanics I

Problem Set 3
 Corrected corrected version

Assigned 2002 September 11
Due 2002 September 18

Show your work on all problems!

1 Motion in a Potential

Throughout this problem, you should limit your attention to $x>0$.
Consider the potential energy

$$
V(x)=-\frac{a}{x^{2}}+\frac{b}{x^{3}}
$$

where a and b are positive constants.
a) Sketch $V(x)$.
b) Find the equilibrium point(s) associated with this potential and state whether they're stable or unstable.
c) Find the frequency of small oscillations about any stable equilibrium points.
d) If a particle of mass m has an initial position $x_{0}=2 b / a$ and initial velocity v_{0}, what is the energy of its trajectory?
e) What is the smallest velocity $v_{\text {esc }}$ such that if a particle starts off at $x_{0}=2 b / a$ and $v_{0}>v_{\text {esc }}$, it will never turn around and move back towards the origin? (You should be able to determine this from the potential energy without calculating any forces.)
f) For a particle with initial $x_{0}=2 b / a$ and $v_{0}=-v_{\text {esc }}$, at what value of x will the velocity vanish? What will the force be at that point?

2 Angle Sum Formulas and the Euler Relation

Use the Euler relation $e^{i \theta}=\cos \theta+i \sin \theta$ to expand out

$$
e^{i(\alpha+\beta)}=e^{i \alpha} e^{i \beta}
$$

in terms of sines and cosines. By requiring the real and imaginary parts of the resulting complex equation to hold separately, derive the angle sum formulas for $\cos (\alpha+\beta)$ and $\sin (\alpha+\beta)$.

3 Energy in the Simple Harmonic Oscillator

Consider a particle of mass m moving in the potential $V(x)=\frac{1}{2} m \omega_{0}^{2} x^{2}$, whose trajectory is

$$
\begin{equation*}
x(t)=A \cos \left(\omega_{0} t+\phi\right) \tag{3.1}
\end{equation*}
$$

a) Using the explicit solution (3.1), find
i) The potential energy $V(t)$ as a function of time in terms of A, ω_{0}, and ϕ.
ii) The kinetic energy $T(t)$ as a function of time in terms of A, ω_{0}, and ϕ.
iii) The total energy $E(t)=V(t)+T(t)$ as a function of time in terms of A, ω_{0}, and ϕ; show (by simplifying the resulting expression) that it is actually constant.
b) The notation $\langle\cdot\rangle$ indicates the time average of a quantity; since everything to do with the simple harmonic oscillator is periodic, it is reasonable to define this average over one period:

$$
\langle f(t)\rangle=\frac{\omega_{0}}{2 \pi} \int_{\phi / \omega_{0}}^{(\phi+2 \pi) / \omega_{0}} f(t) d t
$$

Calculate the time average of each of your results from part a) and show explicitly that $\langle V(t)\rangle+\langle T(t)\rangle=\langle E(t)\rangle$.

