Physics A300: Classical Mechanics I

Problem Set 3 Corrected corrected version

Assigned 2002 September 11 Due 2002 September 18

Show your work on all problems!

1 Motion in a Potential

Throughout this problem, you should limit your attention to x > 0.

Consider the potential energy

$$V(x) = -\frac{a}{x^2} + \frac{b}{x^3}$$

where a and b are positive constants.

- a) Sketch V(x).
- b) Find the equilibrium point(s) associated with this potential and state whether they're stable or unstable.
- c) Find the frequency of small oscillations about any stable equilibrium points.
- d) If a particle of mass m has an initial position $x_0 = 2b/a$ and initial velocity v_0 , what is the energy of its trajectory?
- e) What is the smallest velocity $v_{\rm esc}$ such that if a particle starts off at $x_0 = 2b/a$ and $v_0 > v_{\rm esc}$, it will never turn around and move back towards the origin? (You should be able to determine this from the potential energy without calculating any forces.)
- f) For a particle with initial $x_0 = 2b/a$ and $v_0 = -v_{esc}$, at what value of x will the velocity vanish? What will the force be at that point?

2 Angle Sum Formulas and the Euler Relation

Use the Euler relation $e^{i\theta} = \cos\theta + i\sin\theta$ to expand out

$$e^{i(\alpha+\beta)} = e^{i\alpha}e^{i\beta}$$

in terms of sines and cosines. By requiring the real and imaginary parts of the resulting complex equation to hold separately, derive the angle sum formulas for $\cos(\alpha + \beta)$ and $\sin(\alpha + \beta)$.

3 Energy in the Simple Harmonic Oscillator

Consider a particle of mass m moving in the potential $V(x) = \frac{1}{2}m\omega_0^2 x^2$, whose trajectory is

$$x(t) = A\cos(\omega_0 t + \phi) \tag{3.1}$$

- a) Using the explicit solution (3.1), find
 - i) The potential energy V(t) as a function of time in terms of A, ω_0 , and ϕ .
 - ii) The kinetic energy T(t) as a function of time in terms of A, ω_0 , and ϕ .
 - iii) The total energy E(t) = V(t) + T(t) as a function of time in terms of A, ω_0 , and ϕ ; show (by simplifying the resulting expression) that it is actually constant.
- b) The notation $\langle \cdot \rangle$ indicates the time average of a quantity; since everything to do with the simple harmonic oscillator is periodic, it is reasonable to define this average over one period:

$$\langle f(t) \rangle = \frac{\omega_0}{2\pi} \int_{\phi/\omega_0}^{(\phi+2\pi)/\omega_0} f(t) dt$$

Calculate the time average of each of your results from part a) and show explicitly that $\langle V(t) \rangle + \langle T(t) \rangle = \langle E(t) \rangle$.