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So far we’ve considered first one-dimensional and then multi-dimensional motion of a
single particle moving under the influence of some outside forces. Now we consider the
physically much more interesting situation where there are N particles exterting forces on
each other and possibly also experiencing the influence of outside forces.

0 Notation

We label the individual particles with the index k = 1 . . . N , so that ~rk could be ~r1, ~r2, etc
up to ~rN . It’s important to note that this k does not label different components of a vector,
but rather different vectors.

Particle k:

• has mass mk

• is located at position ~rk

• has velocity ~vk = ~̇rk

• experiences acceleration ~̈rk

• experiences total force ~Fk, which is made up of the “internal force” ~F i
k due to the other

particles and the external force ~F e
k applied on it. Note that ~F e

k is generally different
for different particles. The total force on particle k is, according to this definition,

~Fk = ~F e
k + ~F i

k (0.1)

Additionally, we define the force exerted on particle k by particle ` by ~F i
`→k and note

that by definition the total internal force on particle k is

~F i
k =

N∑
`=1

~F i
`→k (0.2)

As a reminder of the rules governing sums, the student is directed to the handout on
mathematical grammar.

1 Conservation Laws (Symon Sections 4.1-4.4)

We saw in the case of a single particle how some quantities like momentum, energy and
angular momentum are conserved under certain circumstances, and in general, how the rate
at which they change is related to force, work, and torque. Now we consider what happens
when we add up the momentum, energy, or angular momentum of all the particles in the
system.
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1.1 Momentum

We define the total momentum ~P of the system as the vector sum of the momenta of all the
particles that make it up:

~P =
N∑
k=1

~pk (1.1)

where
~pk = mk~vk = mk~̇rk (1.2)

The rate of change of this is, by the sum rule,

d~P

dt
=

N∑
k=1

d~pk
dt

=
N∑
k=1

~Fk =
N∑
k=1

~F e
k +

N∑
k=1

~F i
k (1.3)

The first term is the total external force on the system, and the second is the total internal
force of all the particles on each other. We will now show that if the internal forces between
the particles obey Newton’s third law, the second term vanishes.

Newton’s third law (in its so-called “weak form”) says that the forces between any two
particles k and ` are equal and opposite:

~F i
`→k = −~F i

k→` (1.4)

In particular, the “self-force” of the particle on itself must vanish

~F i
k→k = ~0 (1.5)

so we can rewrite (0.2) as

~F i
k =

N∑
`=1
` 6=k

~F i
`→k (1.6)

We can write the second term in (1.3) as

N∑
k=1

~F i
k =

N∑
k=1

N∑
`=1
6̀=k

~F i
`→k =

N∑
k=1

k−1∑
`=1

~F i
`→k +

N∑
k=1

N∑
`=k+1

~F i
`→k (1.7)

Each of the two sums includes half of the possible terms in which k 6= `; the first sum
contains the terms with ` < k, and the second all the terms with ` > k. In (1.7), we sum
over ` first, but we could also count all the relevant pairs of terms by summing first over
all the possible k values for a given `, then summing over the full range of ` values. Two
different ways to collect

(k = 1, ` = 2) (k = 1, ` = 3) (k = 1, ` = 4) . . . (k = 1, ` = N)
(k = 2, ` = 3) (k = 2, ` = 4) . . . (k = 2, ` = N)

(k = 3, ` = 4) . . . (k = 3, ` = N)
. . . . . .

(k = N − 1, ` = N)
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Thus we see
N∑
k=1

N∑
`=k+1

~F i
`→k =

N∑
`=1

`−1∑
k=1

~F i
`→k (1.8)

but since k and ` are just dummy indices in sums, we can rename them:

N∑
k=1

N∑
`=k+1

~F i
`→k =

N∑
`=1

`−1∑
k=1

~F i
`→k =

N∑
k=1

k−1∑
`=1

~F i
k→` (1.9)

which we can substitute back into (1.7) to get

N∑
k=1

~F i
k =

N∑
k=1

k−1∑
`=1

~F i
`→k +

N∑
k=1

k−1∑
`=1

~F i
k→` =

N∑
k=1

k−1∑
`=1

(~F i
`→k + ~F i

k→`)︸ ︷︷ ︸
~0 by Newton’s 3rd

= ~0 (1.10)

We thus find that the rate of change in the total momentum of the system is equal to the
sum of the external forces for systems obeying Newton’s third law:

d~P

dt
=

N∑
k=1

~F e
k (1.11)

Symon calls this total external force ~F .
A consequence of this is that when there is no external force, and the internal forces obey

Newton’s third law, the total momentum of the system is conserved (although it may be
exchanged between particles due to the internal forces):

d~P

dt
= ~0 when ~F e

k = ~0 and ~F i
`→k = −~F i

k→` (1.12)

Symon makes the point that this result can also be derived when the total work done in
moving all the particles in the system by the same infinitesimal displacement d~r vanishes.
This is the physically deep statement that conservation of momentum follows from isotropy
of space.

1.2 Center of Mass

The total momentum of a system takes on a particularly interesting form in terms of the
center of mass of the system, which is a point whose position vector is defined as the weighted
average of all the position vectors (weighted by the corresponding particle masses):

~R =

∑N
k=1mk~rk∑N
k=1mk

=

∑N
k=1mk~rk
M

(1.13)

if we multilply by mass to get

M ~R =
N∑
k=1

mk~rk (1.14)
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and then take the time derivative, we get

M ~̇R =
N∑
k=1

mk~̇rk =
N∑
k=1

~pk = ~P (1.15)

so the total momentum of the system is the same as that of a particle with a mass equal to
that of the whole system moving with the center of mass.

Similarly, we can write the result of section 1.1 as

~F =
N∑
k=1

~F e
k =

d~P

dt
= M ~̈R (1.16)

so the center of mass of the system moves as if it were a particle of mass M (the total mass)
being acted on by the total external force. This fact often makes it sensible to break up the
motion of a system into the motion of the center of mass and the motions of the particles
about that center of mass.

1.3 Angular Momentum

In Chapter Three we motivated a definition of the angular momentum ~L of a single particle
about the origin as

~L = ~r × ~p = m~r × ~̇r (1.17)

We now generalize this to be the angular momentum of the kth particle defined with respect
to an arbitrary point Q which may or may not be moving, and replace ~r with ~r − ~rQ:

~LkQ = mk(~rk − ~rQ)× (~̇rk − ~̇rQ) (1.18)

If we take the time derivative of this, we get (by the product rule)

d~LkQ

dt
= mk (~̇rk − ~̇rQ)× (~̇rk − ~̇rQ)︸ ︷︷ ︸

~0

+mk(~rk − ~rQ)× (~̈rk − ~̈rQ)

= (~rk − ~rQ)×mk~̈rk −mk(~rk − ~rQ)× ~̈rQ

(1.19)

We define the total angular momentum about the point Q by

~LQ =
N∑
k=1

~LkQ (1.20)

You will work out on the homework some of the properties of this sum, but for the time
being, let’s use (1.19) to calculate its time derivative

d~LQ
dt

=
N∑
k=1

d~LkQ

dt
=

N∑
k=1

[
(~rk − ~rQ)×mk~̈rk −mk(~rk − ~rQ)× ~̈rQ

]
=

N∑
k=1

(~rk − ~rQ)× (~F e
k + ~F i

k)−M(~R− ~rQ)× ~̈rQ

(1.21)
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The last term vanishes in a lot of problems of interest. In particular, ~R−~rQ = ~0 if the point
Q is the center of mass, while ~̈rQ = ~0 if Q is moving with a constant velocity. We assume
we have one of those two cases, so that

d~LQ
dt

=
N∑
k=1

(~rk − ~rQ)× ~F e
k +

N∑
k=1

(~rk − ~rQ)× ~F i
k (1.22)

As in the case of linear momentum, the latter term vanishes as a consequence of Newton’s
third law, but here we need not only that the internal forces between any pair of particles
are equal and opposite

~F i
k→` = −~F i

`→k (1.23)

but also that they are directed along the line between the particles, so that

(~rk − ~r`)× ~F i
k→` = ~0 (1.24)

It is left as an exercise to the student to show that (1.23) and (1.24) imply that the second
sum in (1.22) vanishes, leaving

d~LQ
dt

=
N∑
k=1

(~rk − ~rQ)× ~F e
k = ~NQ (1.25)

where we have defined the total torque ~NQ about the point Q due to all the external forces.

1.4 Energy

Recall the one-particle work-energy theorem. There we defined the kinetic energy

T =
1

2
m~v · ~v (1.26)

and showed via Newton’s second law that

dT

dt
= ~F · ~v (1.27)

If ~F depended only on the position of the particle (e.g., expressed in the position vector ~r),
then we could define the work done in going from one point to another along a particular
path. For the actual trajectory followed, the total work done was found to be equal to the
change in kinetic energy.

W1→2 = c

∫
1→2

~F · d~r = T2 − T1 (1.28)

Furthermore, if the force field happened to obey

~∇× ~F = ~0 (1.29)

we could define a scalar field V (~r) such that

~F = −~∇V (1.30)
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and then the total energy (kinetic plus potential) would be conserved:

d

dt
(T + V ) = 0 (1.31)

For a system of particles, we can define the total kinetic energy

T =
N∑
k=1

Tk =
N∑
k=1

1

2
m~vk · ~vk (1.32)

and the sum rule along with Newton’s second law tells us

dT

dt
=

N∑
k=1

dTk
dt

=
N∑
k=1

~Fk · ~vk (1.33)

For forces depending only on position, we assume the external force on each particle depends
only on that particle’s location:

~Fk = ~F e
k (~rk) + ~F i

k(~r1, ~r2, . . . , ~rN , ) (1.34)

We could define a general work done in moving all the particles to new positions, but we’d
need to worry about not only the path each particle took through 3-dimensional space, but
where each other particle was on its path at each point along the way. Basically, we’d have
to integrate along a path in 3N -dimensional configuration space.

Instead, let’s specialize to cases where a potential energy can be defined up front. To
work with a potential energy which can depend on the coördinates of many particles, we’ll
define the gradient operator for the kth particle

~∇k := x̂
∂

∂xk
+ ŷ

∂

∂yk
+ ẑ

∂

∂zk
(1.35)

which is just analogous to the position vector for the kth particle

~rk = x̂ xk + ŷ yk + ẑ zk (1.36)

Consider now two special cases in which potential energy can be defined:

1) All the forces, internal and external combined, can be derived from a single potential
V (~r1, ~r2, . . . , ~rN) (which has the 3N coördinates of the N particles as its arguments)
as

~Fk = −~∇kV (1.37)

Then, using (1.33), we find

dT

dt
=

N∑
k=1

(
−~∇kV

)
· d~rk
dt

= −
N∑
k=1

(
∂V

∂xk

dxk
dt

+
∂V

∂yk

dyk
dt

+
∂V

∂zk

dzk
dt

)
︸ ︷︷ ︸

3N terms

= −
(
∂V

∂x1

dx1
dt

+
∂V

∂y2

dy2
dt

+ . . .+
∂V

∂zN

dzN
dt

)
= −dV

dt

(1.38)
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where the last step follows by the chain rule.

Thus
dT

dt
+
dV

dt
=

d

dt
(T + V ) = 0 (1.39)

and the total energy
∑N

k=1Tk + V is conserved.

2) The internal forces ~F i
k(~r1, ~r2, . . . , ~rN) are conservative and derivable from a potential

V i
k (~r1, ~r2, . . . , ~rN) (note that Symon leaves off the superscript i, but it’s clearer if we

make explicit that this is the internal potential energy) but the internal ones are not.
This means

~Fk = ~F e
k (~rk)− ~∇kV

i (1.40)

Now
dT

dt
=

N∑
k=1

[
~F e
k · ~vk −

(
~∇kV

i
)
· ~vk
]

(1.41)

so the rate of change of the internal energy is

∂

∂t

T + V i︸ ︷︷ ︸
Ei

 =
N∑
k=1

~F e
k ·

d~rk
dt

(1.42)

Note that now we can say

Ei
F − Ei

I =
N∑
k=1

c

∫
Ck

~F e
k (~rk) · d~rk (1.43)

The work done on the system (the change in total internal energy from initial state
I to final state F ) is the sum of N independent 3-dimensional line integrals, The kth
integral is along Ck, the path followed by the kth particle from its initial position ~rkI
to its final position ~rkF . This is a sum of N intependent 3-dimensional line integrals
rather than a single integral through 3N -dimensional configuration space because the
external force on one particle doesn’t depend on the positions of the others.

1.5 Comments on Symon Section 4.4 (originally sent via email)

Symon makes a few statements in his “Critique of the Conservation Laws” (Section 4.4)
which ought to be updated in light of developments in Physics which have occurred in the
32 years since the book was published.

On page 169, he says “The theory of relativity predicts a few slight deviations from
the classically predicted motion, but these are too small to be observed except in the case
of the orbit of Mercury...” In the 1970s, Hulse and Taylor discovered the binary pulsar
1913+16, two very dense neutron stars orbiting fast enough and close enough to one another
that relativistic gravitational effects become important. Among the predictions of general
relativity is that the system should lose energy due to the emission of gravitational radiation,
causing the orbits to slowly evolve. Sure enough, decades of observation has shown a change
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in their orbital parameters consistent with that predicted by general relativity. Hulse and
Taylor received the 1993 Nobel Prize in Physics for this discovery. More details can be found
at http://www.nobel.se/physics/laureates/1993/

Also on page 169, he says “Even quantum mechanics fails to describe such phenomena
correctly, and physics is now struggling to produce a new theory which will describe this class
of phenomena.” In fact, most of the interactions among elementary particles such as electrons
and the quarks which make up protons and neutrons are now well understood and described
in terms of quantum field theory and the so-called standard model of particle Physics, which
has had a number of Nobel Prizes associated with it, most notably that shared by Wein-
berg, Salam and Glashow in 1979 (http://www.nobel.se/physics/laureates/1979/). It
is interesting to note that the fundamental description of this theory is in the form of a
Lagrangian. Next semester we will learn about Lagrangian mechanics (see chapter 9), which
will initially be introduced as an equivalent formulation of Newtonian mechanics. Interest-
ingly, it turns out to be much more widely applicable than the Newtonian mechanics which
it reproduces.

On page 170, Symon says “If the particles of which the larger body is composed are taken
as atoms and molecules ... we should apply quantum mechanics, not classical mechanics, to
their motion.” The fact that classical mechanics is a good approximation for the behavior of
everyday objects, and the successes of quantum mechanics as a fundamental theory, indicate
that classical mechanics should emerge as an approximation to quantum mechanics, in the
limit of large systems. This expectation is analogous to the way that Newtonian mechan-
ics and gravitation emerge as approximations to Einstein’s special and general theories of
relativity. However, no one has produced a comprehensive description of this “quantum to
classical transition”, in part because the most practical interpretation of quantum mechanics
requires an artificial division into a quantum-mechanical system and a classical observer.

On page 171, Symon says “The gravitational forces acting between astronomical bodies
are conservative, so that the principle of conservation of mechanical energy holds very accu-
rately in astronomy.” The one exception we now have to this is the aforementioned binary
pulsar (and systems like it). In that case, the relativistic effects make the gravitational ef-
fects behave more like electromagnetism than Newtonian gravity, which means we have to
assign energy and angular momentum to the gravitational radiation being given off by the
binary in order to apply the conservation laws.

We will now skip section 4.5 (“Rockets, Conveyor Belts, and Planets”) but you should
read the last paragraph on pages 174–175 [which includes Equations (4.57–4.59)] about the
evolution of the Earth-Moon system.

2 Collision Problems (Symon Section 4.6)

This is a special, rather useful, case of a multi-particle interaction, with N = 2. Analysis of
collisions relies purely on conservation of energy and momentum. Here is the basic picture
(note that there are no external forces (~F e

k = ~0)

• Before the collision:
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tm1
PPPq
~v1I

t
m2

�
�
�
�
�3

~v2I

The particles are widely separated and there are no or negligible internal forces, which
means no net force on either particle:

~Fk = mk~̇vk = ~0 (2.1)

This means that each particle’s velocity vector is constant before the collision:

~vk = constant = ~vkI (2.2)

• During the collision: The particles are interacting (so the internal forces are non-
zero). The interaction is often not well modelled. All we know is

– Newton’s third law holds, so the total momentum ~P = ~p1 + ~p2 is conserved.

– Sometimes, we also know the forces to be conservative. (This is called an elastic
collision.) In those cases, total energy E = E1 + E2 is also conserved.

• Before the collision: tm1
PPPq
~v1I

t
m2

�
�
�
�
�3

~v2I

Just as before the collision, the particles are widely separated and there are no or
negligible internal forces, which again means that each particle’s velocity vector is
constant after the collision:

~vk = constant = ~vkF (2.3)

In general, though, ~vkI 6= ~vkF ; the velocity of each particle changes as a result of the
collision.

Applying conservation of momentum, ~P is unchanged as a result of the collision, so

m1~v1I +m2~v2I = ~PI = ~PF = m1~v1F +m2~v2F (2.4)

This single vector equation gives us three equations relating the components of velocity
before and after the collision.
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IF the collision is elastic, we also have a fourth condition from conservation of total
energy. The total energy before the collision is

EI = TI =
1

2
m1~v1I · ~v1I +

1

2
m2~v2I · ~v2I (2.5)

If we define the speed e.g., of particle 1 before the collision as

v1I = |~v1I | (2.6)

then
~v1I · ~v1I = v21I (2.7)

which makes the additional equation, valid for elastic collisions,

1

2
m1v

2
1I +

1

2
m2v

2
2I = EI = EF =

1

2
m1v

2
1F +

1

2
m2v

2
2F (2.8)

Note that if we know m1, m2, ~v1I , and ~v2I , this analysis is not enough to uniquely
determine ~v1F and ~v2F , even for an elastic collision. This is because ~v1F and ~v2F between
them have 2 × 3 = 6 components, but there are only 3 + 1 = 4 equations. This is not
surprising, since we did not specify all the details of the collision.

3 The Two-Body Problem (Symon Section 4.7)

Another useful application of the “systems of particles” formalism, again with N = 2, is the
two-body problem, where the motion of two particles is divided into overall motion of the
center of mass and motion of the two particles relative to each other.

O
�
�
�
�
�
�
�
�
�
�
��

~r1

tm1

���
���

���
���

���
�:

~r2

tm2
Q

Q
Q

Q
Q
Q

Q
Q
Q

QQk

~r1 − ~r2

In the case N = 2, each particle feels an internal force due to the other, which assume obeys
(the weak form of) Newton’s Second Law. Thus

~F i
2 = ~F i

1→2 = −~F i
2→1 = −~F i

1 (3.1)

so the equations of motion (from Newton’s second law) are

m1~̈r1 = ~F e
1 + ~F i

1 (3.2a)

m2~̈r2 = ~F e
2 − ~F i

1 (3.2b)
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Recalling the definitions of the total mass

M = m1 +m2 (3.3)

and the center-of-mass vector
~R =

m1~r1 +m2~r2
M

(3.4)

we see that adding (3.2a) and (3.2b) tells us something we already know, namely that

M ~̈R = ~F e
1 + ~F e

2 = ~F (3.5)

We’d now like to look at the relative motion, as described by the time dependence of the
relative position vector

~r := ~r1 − ~r2 (3.6)

Multiplying (3.2a) by m1 and (3.2b) by m2 and subtracting gives us an equation of motion
for ~r:

m1m2~̈r = m2(m1~̈r1)−m1(m2~̈r2) = m2
~F e
1 −m1

~F e
2 + (m1 +m2)~F

i
1 (3.7)

if we divide by m1 +m2 we get

m1m2

m1 +m2

~̈r = ~F i
1 +

m1m2

m1 +m2

(
~F e
1

m1

−
~F e
2

m2

)
(3.8)

The combination of masses that appears in two of the three terms in (3.8) is so useful that
it has its own name: the reduced mass

µ :=
m1m2

m1 +m2

(3.9)

(Note that m1m2 = Mµ.)
Now, let’s specialize to cases where the last term in (3.8) vanishes, e.g., when there are no

external forces or a constant external gravitational field, in which ~F e
k = mk~g with constant

~g, so that
~F e
1

m1
= ~g =

~F e
2

m2
. (Note also that if ~F e

k = mk~g, ~F = ~F e
1 + ~F e

2 = m1~g + mw~g = M~g.)
In these cases,

µ~̈r = ~F i
1 (3.10)

This is the equation of motion for a body of mass µ with position vector ~r moving under the
influence of a force ~F i

1; for this reason this is often called the effective one-body formalism
for the two-body problem.

This formalism is even more manifest in the forces between the particles can be derived
from a potential V (~r1−~r2) which depends only on the relative position of the two particles:

~F i
k = −~∇kV (~r1 − ~r2) (3.11)

To be explicit,
V (~r) = V (x, y, z) = V (x1 − x2, y1 − y2, z1 − z2) (3.12)
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so

∂V

∂x1
=
∂V

∂x

∂x

∂x1
=
∂V

∂x
(3.13a)

∂V

∂x2
=
∂V

∂x

∂x

∂x2︸︷︷︸
∂(x1−x2)

∂x2
=−1

=
∂V

∂x
(3.13b)

and likewise for the yk and zk derivatives. This means that Newton’s third law is satisfied:

~∇2V = ~∇1V (3.14)

but also
~F i
1 = −~∇1V = −~∇V (3.15)

So this really does look like a one-body problem:

µ~̈r = −~∇V (3.16)

The other piece of the overall motion is the motion of the center of mass, which we know in
a couple of specific cases:

M ~̈R =

{
~0 if no external forces

M~g if constant external gravitational field
(3.17)

Finally, we return to the case of two pointlike bodies interacting under their mutual
gravitational influences (which we looked at before in the approximation where the more
massive body didn’t move). The gravitational force on particle number one has a magnitude
of ∣∣∣~F i

1

∣∣∣ =
Gm1m2

|~r1 − ~r2|2
(3.18)

(proportional to both masses and inversely proportional to the square of the distance between
them). It is directed from particle one towards particle two, so it is parallel to the unit vector

− ~r1 − ~r2
|~r1 − ~r2|

(3.19)

and thus ∣∣∣~F i
1

∣∣∣ = − Gm1m2

|~r1 − ~r2|2
~r1 − ~r2
|~r1 − ~r2|

= −Gm1m2
~r

|~r|3
(3.20)

or, defining r to be the distance between the two bodies,∣∣∣~F i
1

∣∣∣ = −Gm1m2
~r

r3
. (3.21)

It’s not too hard to show that this force is associating with a potential energy

V = −Gm1m2

r
(3.22)
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Now, the nice thing is that, since m1m2 = Mµ,

V = −GMµ

r
(3.23)

and this two-body problem is completely equivalent to the one-body problem of a particle
of mass µ moving in the gravitational field of a mass M fixed at the origin:

tµ

tMQ
Q

Q
Q

Q
Q
Q

Q
Q
QQk

~r
⇐⇒

O
�
�
�
�
�
�
�
�
�
�
��

~r1

tm1

��
���

���
���

���
��:

~r2

tm2

�
��

�
��

�
��

�
��
�*

~R Q
Q

Q
Q
Q

Q
Q

Q
Q
QQk

~r

We can recover the two-body description of the motion (which corresponds, after all, to
physical reality), by inverting

~r = ~r1 − ~r2 (3.24a)

M ~R = m1~r1 −m2~r2 (3.24b)

to find

~r1 = ~R +
m2

M
~r (3.25a)

~r2 = ~R− m1

M
~r (3.25b)

Note that if m2 � m1, then m2 ≈ M , µ ≈ m1, ~r1 ≈ ~R + ~r, ~r2 ≈ ~R, and the effective
one-boty picture reduces approximately to the actual two-body picture. But the effective
one-body solutions generate the exact two-body solution for any mass ratio via (3.25).

4 Further applications

The student is referred to Symon sections 4.7 and 4.8 for further applications of the formalism
of systems of particles. We’re going to skip the rest of the chapter (which is devoted to
coupled oscillations) and jump to chapter five, specifically the introductory parts about rigid
bodies and mass distributions.

A Appendix: Correspondence to Class Lectures

Date Sections Pages
2003 November 18 0–1.3 2–6
2003 November 20 1.4 6–11
2003 November 25 3–4 11–14
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