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1 Vector Analysis

1.1 Definitions

There are numerous definitions of a vector, including

• An arrow in space

• Something defined by its magnitude and direction

• An ordered list of numbers

• A directional derivative

We’ll start from the physical/geometrical definition in terms of magnitude and direction.
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1.1.1 Notation

When talking about a vector, we will write it with an arrow, like so: ~A. Symon uses boldface,
like so: A, To avoid confusion, it’s very important never to accidentally drop the vector
symbol from a vector, since the same letter without a vector symbol may mean something
entirely different.

Note that vectors give us additional grammatical rules. Just as you can’t add a length to
a force, or compare a mass to a time, it’s completely meaningless to try to say that a vector
is equal to something that’s not a vector. So it’s okay to say ~A = ~B or a = b, but something
like “ ~A = a” just makes no sense.

1.2 Basic Vector Arithmetic

1.2.1 Equality

We think of a vector as being defined solely by its magnitude and direction, so if you’ve got
two different vectors on a diagram in different places, you’re free to “slide” them around
without changing their directions to compare them. So in the diagram below ~A = ~B:

�
�
�
�
�
�
�3

~A
�
�
�
�
�
�
�3

~B

1.2.2 Magnitude

The magnitude or “length” of a vector is a positive number, and is not a vector. We write

it with an absolute value sign, like so:
∣∣∣ ~A∣∣∣. Note that the magnitude of a vector will not in

general have units of length. The force ~F , momentum ~p, and acceleration ~a are all vectors.

1.2.3 Multiplication by a Scalar

The simplest thing you can do to a vector is multiply it by a number, which is also called a
scalar. (There are more precise definitions of a scalar, specifically that it should be something
which doesn’t depend on the choice of coördinate system, but for the time being it’s fine to
think of it as a number.)

It’s convenient to consider one special case first, namely multiplication by −1. In this
case, we define the result to be a new vector with the same magnitude, pointing in the
opposite direction:

�
�
�
�
�
�
�3

~A
�

�
�

�
�
�
�+

− ~A
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Note that ∣∣∣− ~A∣∣∣ =
∣∣∣ ~A∣∣∣ (1.1)

Now, we can consider multiplication by a general scalar, which is defined as follows: c ~A
is a vector whose magnitude is ∣∣∣c ~A∣∣∣ = |c|

∣∣∣ ~A∣∣∣ (1.2)

(note that we need the absolute value sign, to make sure the magnitude of c ~A is not negative)

and which points in the same direction as ~A if c > 0 and in the opposite direction if c < 0.
Here are some examples:

�
�
�
�
�
�
�3

~A

�
�
�
�
�
�
�
�
�
�
�
�
�
�3

2 ~A

�
�
�

�
�
�

�
�
�

�
�
�

�
�+

(−2) ~A

Multiplication of a scalar by a vector behaves in exactly the way you imagine it would;
in particular it obeys the associative property:

b(c ~A) = (bc) ~A (1.3)

1.2.4 Addition of Vectors

The geometrical definition of the sum of two vectors follows from the idea of a vector as an
arrow. To get the effect of ~A plus ~B, you just line the arrows up, putting the tail of ~B at
the head of ~A, and their sum ~A+ ~B goes from the tail of ~A to the head of ~B:

�
�
�
�
�
�
�
��

~A

-
~B

�
�
�
�
�
�
�
��

~A

-
~B

�
�
�
�
�
�
�
�
�
�
�
�3

~A+ ~B

There are two reasonable ways to define subtraction of one vector from another. One is
as multiplication by −1 followed by addition:

~A− ~B = ~A+ (− ~B) (1.4)

�
�
�
�
�
�
�
��

~A

-
~B

�
− ~B

A
A
A
A
A
A
A
AK

~A+ (− ~B)
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Alternatively, we can note that ~A − ~B is the vector to which you would add ~B and be
left with ~A:

( ~A− ~B) + ~B = ~A (1.5)

�
�
�
�
�
�
�
��

~A

-
~B

A
A
A
A
A
A
A
AK

~A− ~B

Both definitions are of course equivalent, and give the same result for ~A− ~B.
Note that with vector addition, as with ordinary addition, the quantities being added

must have the same units. It makes no sense to write ~F + ~p if ~F is a force and ~p is a
momentum.

Vector addition, together with multiplication by a scalar, obeys all of the properties you’d
expect. These are collected in equations (3.5−3.8) of Symon.

Note that it makes no sense to try to add a vector to a scalar, just as it makes no sense
to say that a vector equals a scalar. An expression like ~A+ a is meaningless.

1.3 Bases and Components

These geometrical definitions are all well and good, but they can only go so far. Eventually
we want to be able to do vector calculations algebraically, without having to draw a picture
every time. To do this, we start with a Cartesian (x, y, z) coördinate system, and define unit
vectors x̂, ŷ and ẑ parallel to the three coördinate axes. We write a hat over them, rather
than an arrow, to emphasize that they’re unit vectors, i.e., of magnitude one:

|x̂| = |ŷ| = |ẑ| = 1 (1.6)

Note that this means that the unit vectors x̂, ŷ, and ẑ, like all unit vectors, are dimensionless,
and in particular that they do not have units of length like the coördinates x, y, and z.

Given these unit vectors, one can project any vector ~A onto the three coördinate axes,
defining the projections as Ax, Ay, and Az. These are all numbers (not vectors) with units

equal to those of the original vector ~A. Geometrically, the law of vector addition makes it
relatively easy to see that

~A = Axx̂+ Ayŷ + Az ẑ (1.7)

We illustrate this in two dimensions:
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��
�
��

�
��

�
��

�
��

�
��

�
��*

~A

-
x̂

6ŷ
-Axx̂

-�
Ax

6

?

Ay

6

Ayŷ

1.4 The Scalar (Dot, Inner) Product

We’ve defined how to add vectors and how to multiply a vector by a scalar. There turn out
to be several different sensible ways to define the product of one vector with another, which
have names corresponding to the object which results from the multiplication.

The simplest of these is the scalar product, also known as the dot product.

- ~A��
��

�
��

�
��*

~B

-�
B‖

6



1.5 The Vector (Cross) Product

1.6 The Position Vector

1.7 Differentiation and Integration

2 Vectors in Mechanics and Kinematics

2.1 Force

2.2 Velocity, Momentum, and Acceleration

3 Non-Cartesian Coördinate Systems

3.1 Plane Polar Coördinates

3.2 Cylindrical Coördinates

3.3 Spherical Coördinates

4 Conservation Theorems in Two or More Dimensions

We continue our look at the analogies between one- and three-dimensional mechanics by
looking at some of the conservation theorems.

4.1 Force and Momentum

In one dimension, we saw that we can integrate

F =
dp

dt
(4.1)

to get ∫ t2

t1

F (t) dt = p(t2)− p(t1) (4.2)

and the same thing carries over perfectly well into two or more dimensions; we can integrate

~F =
d~p

dt
(4.3)

to get ∫ t2

t1

~F (t) dt = ~p(t2)− ~p(t1) (4.4)

since the acts of differentiating and integrating the vectors ~F and ~p with respect to the scalar
t are well-defined.

7



4.2 Work and Kinetic Energy

Recall that in one dimension, we defined the kinetic energy as

T =
1

2
mv2 ; (4.5)

this was useful because
dT

dt
= mv

dv

dt
= F v = F

dx

dt
(4.6)

where we used Newton’s second law to replace ma with F . We could then integrate this to
see

T (t2)− T (t1) =

∫ t2

t1

F
dx

dt
=

∫ x(t2)

x(t1)

F dx = W1→2 (4.7)

i.e., the increase in kinetic energy is just the work done on the particle.
When generalizing the kinetic energy to two or more dimensions, we have to note that

it involves the product of the velocity with itself. We know two ways to multiply vectors by
vectors, and since ~v × ~v = ~0 is not very interesting, we opt for the dot product and define

T =
1

2
m~v · ~v =

1

2
m |~v|2 (4.8)

This means the kinetic energy is still one-half the mass times the speed squared. Note that
while force, position, velocity, momentum and acceleration all become vectors in more than
one dimension, work and energy remain scalars.

The time derivative of the kinetic energy is

dT

dt
=

1

2
m

(
d~v

dt
· ~v + ~v · d~v

dt

)
= m

d~v

dt
· ~v = ~F · ~v (4.9)

which makes the increase in kinetic energy between two times t1 and t2

T (t2)− T (t1) =

∫ t2

t1

~F · d~r
dt

= c

∫
~r(t1)→~r(t2)
along ~r(t)

~F · d~r = W1→2 (4.10)

where the contour integral is just what we need to define the work done on the particle as it
moves along its trajectory ~r(t) from time t1 to time t2.

4.2.1 Complications Arising from Potential Energy

In one dimension, we were able to use an indefinite integral to define the potential energy

V (x) = −
∫
F dx (4.11)

up to an overall additive constant. This was equivalent to the force being given by

F = −dV
dx

(4.12)
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and meant that the negative of the work done on a particle was just the increase in its
potential energy as it moved from position x1 to position x2:

V (x2)− V (x1) = −
∫ x2

x1

F (x) dx (4.13)

where the arbitrary constant in the definition of V (x) cancels out.
When we try to generalize this to three dimensions, we run into trouble. Now the work

is defined by a contour integral, and we can’t just define V (~r) as something like

“ − c

∫
~F · d~r ” (4.14)

because there’s no such thing as an “indefinite contour integral”. The contour integral
depends not only on the endpoints, but the path through space taken from one to the other.
The implicit definition in terms of a derivative would be

“ ~F = −dV
d~r

” (4.15)

which is likewise in terms of something which we never defined (a derivative with respect to
a vector). We could try to fall back to the change in potential energy being related to the
work done:

V (~r2)− V (~r1) = −c
∫
~r1→~r2

~F · d~r (4.16)

but in general, thus will not be well-defined, since the right-hand side will depend not only
on the positions ~r1 and ~r2, but also on the path taken between them.

4.3 Conservative Forces

For some force fields, however, the right-hand side of (4.16) will be the same regardless of
the path taken. We’ll assume this is true and see what that tells us about the force field
F (~r) and how it can be derived from V (~r).

First, we consider the special case where the endpoints ~r1 and ~r2 differ only in their x
coördinate:

y1 = y2 = y0 (4.17a)

z1 = z2 = z0 (4.17b)

so that

~r1 = x1x̂+ y0ŷ + z0ẑ (4.18a)

~r2 = x2x̂+ y0ŷ + z0ẑ (4.18b)

(4.18c)

We’re assuming the work done by the force field when moving between these two points is
independent of the path, so let’s choose the simplest one, on which only the x coördinate is
changing, and parametrize it by that x coördinate:

~r(s) = sx̂+ y0ŷ + z0ẑ s : x1 → x2 (4.19)
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This then means
d~r

ds
= x̂ (4.20)

and
~F · d~r

ds
= ~F · x̂ = Fx (4.21)

The difference (4.16) in the potential energies then becomes

V (~r2)− V (~r1) = −
∫ x2

x1

Fx(~r(s)) ds = V (x2, y0, z0)− V (x1, y0, z0) = −
∫ x2

x1

Fx(x, y0, z0) dx

(4.22)
Now we know that in one dimension (4.13) is equivalent to (4.12); this is the same construc-
tion, with y0 and z0 going along for the ride, so we get the same result, with the derivative
with respect to x now a partial derivative at constant y and z:

Fx(~r) = −∂V
∂x

(4.23a)

But there is nothing special about the x direction; we could make the same argument holding
x and z constant and varying y, or holding x and y constant and varying z, which means

Fy(~r) = −∂V
∂y

(4.23b)

Fz(~r) = −∂V
∂z

(4.23c)

so if the force field ~F (~r) is associated with the potential V (~r) according to (4.16), we can
write it as

~F = −
(
x̂
∂V

∂x
+ ŷ

∂V

∂y
+ ẑ

∂V

∂z

)
(4.24)

Not every force field can be written in the form (4.24); for example, the force field

~F = A(xŷ − yx̂) (4.25)

(where A is a constant) cannot. The easiest way to see this is to recall that you get the same
result no matter in which order you take a mixed partial derivative:

∂2V

∂x ∂y
=

∂2V

∂y ∂x
(4.26)

but if ~F is defined by (4.24), that means

∂Fy
∂x

=
∂2V

∂x ∂y
=

∂2V

∂y ∂x
=
∂Fx
∂y

(4.27)

On the other hand, the force (4.25) has

∂Fy
∂x

=
∂(Ax)

∂x
= A (4.28a)

∂Fx
∂y

=
∂(−Ay)

∂y
= −A 6= ∂Fy

∂x
(4.28b)
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Similar conditions can be worked out for the other mixed partial derivatives of V (x, y, z),
resulting in the conditions

∂Fy
∂x

=
∂Fx
∂y

(4.29a)

∂Fz
∂y

=
∂Fy
∂z

(4.29b)

∂Fx
∂z

=
∂Fz
∂x

(4.29c)

in order for ~F (~r) to be associated with a potential. We’ve shown that they are necessary [no
force field can be associated with a potential unless it satisfies (4.29)]; it turns out that they
are also sufficient [and force field which satisfies (4.29) can be associated with a potential by
(4.24)].

5 Fundamentals of Vector Calculus

5.1 The Gradient

The expression (4.24) for generating a vector field ~F (~r) given a scalar field U(~r) allows us
to give a well defined meaning to the “differentiation by a vector” we were trying to define
in (4.15). It is a useful enough operation that it has its own name, the gradient

~∇V = x̂
∂V

∂x
+ ŷ

∂V

∂y
+ ẑ

∂V

∂z
(5.1)

The symbol ~∇ (pronounced “del”) can be thought of as a vector differential operator

~∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(5.2)

We could also express this operator in terms of non-Cartesian basis vectors in a brute
force manner as follows:

1. Invert the relationshipr̂θ̂
φ̂

 =

sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

x̂ŷ
ẑ

 (5.3)

to get x̂, ŷ, and ẑ in terms of the spherical coördinate basis vectors.

2. Calculate the partial derivatives of the spherical coördinates with respect to the Carte-
sian ones and construct

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ
(5.4a)

∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
+
∂φ

∂y

∂

∂φ
(5.4b)

∂

∂z
=
∂r

∂z

∂

∂r
+
∂θ

∂z

∂

∂θ
+
∂φ

∂z

∂

∂φ
(5.4c)
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3. Substitute, simplify, and rearrange.

Fortunately, there’s a much easier, clever way to do things.
Consider the the infinitesimal change in the value of the scalar field V (~r) induced by an

infinitesimal change
d~r = x̂dx+ ŷdy + ẑdz (5.5)

position vector ~r. We know from the chain rule of multi-variable calculus that

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz = (~∇V ) · (d~r) (5.6)

But we also know that in spherical coördinates,

d~r = r̂dr + θ̂r dθ + φ̂r cos θ dφ (5.7)

which means

dV = (~∇V ) · (d~r) = (r̂ · ~∇V )dr + (θ̂ · ~∇V )r dθ + (φ̂ · ~∇V )r sin θ dφ (5.8)

On the other hand, the chain rule tells us

dV =
∂V

∂r
dr +

∂V

∂θ
dθ +

∂V

∂φ
dφ (5.9)

Since the spherical coördinate basis is orthonormal, this gives us the form of the gradient in
spherical coördinates as

~∇V = r̂
∂V

∂r
+ θ̂

1

r

∂V

∂θ
+ φ̂

1

r sin θ

∂V

∂φ
(5.10)

5.2 Divergence, Curl, and All That

Thinking of ~∇ as a vector operator, we can also define how it acts on vector fields by analogy
with the dot and cross products:

~∇ · ~A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(5.11)

and

~∇× ~A =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣ = (∂yAz − ∂zAy)x̂+ (∂zAx − ∂xAz)ŷ + (∂xAy − ∂yAx)ẑ (5.12)

where we have defined the phenomenally useful notation

∂x =
∂

∂x
(5.13)

There’s a whole rich subject of vector calculus, and the relationship between derivatives and
integrals, for which I refer you to section 3.6 of Symon, your Calc III text, and last year’s
lecture notes.
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The one thing that’s of interest to us right now is the observation that the conditions
(4.29) for a force field ~F (~r) to be conservative are just equivalent to

~∇× ~F = ~0 (5.14)

This is associated with the vector calculus identity

~∇× ~∇V = ~0 (5.15)

which is usually stated as a consequence of the fact that a vector crossed with itself is zero
~A× ~A, but note that we have to be a little careful because the vector in question here is an
operator ~∇. For instance, if the operator were r~∇, the result would be

r~∇× (r~∇V ) = r(~∇r)× (~∇V ) 6= ~0 (5.16)

The real reason for this identity is once again the fact that partial derivatives “commute”,
e.g., (4.26).

5.3 Practical Calculation of Potential Energy

We end our consideration of conservative forces with an illustration of a technique to de-
termine the potential from which a conservative force field was generated. One method,
by integrating from the origin along a conveniently chosen path to an arbitrary point, is
illustrated in Section 3.12 of Symon. We illustrate here an alternative method, using the
same force.

The force field in the example is

~F = ay(y2 − 3z2) x̂+ 3ax(y2 − z2) ŷ − 6axyz ẑ (5.17)

which means the potential energy V (x, y, z) has the derivatives

∂V

∂x
= ay(3z2 − y2) (5.18a)

∂V

∂y
= 3ax(z2 − y2) (5.18b)

∂V

∂z
= 6axyz (5.18c)

If we knew the derivative of a one-dimensional function, we could take the indefinite integral
and obtain the function up to an additive integration constant. We do basically the same
thing here, integrating with respect to one variable at a time and holding the other ones
constant.

First, we treat y and z as constants and integrate the x derivative:

V (x, y, z) =

∫
∂V (x, y, z)

∂x
dx =

∫
ay(3z2 − y2) dx = axy(3z2 − y2) + A(y, z) (5.19)

When we do the indefinite integral we get an arbitrary integration constant, but since y and
z are constants for the purposes of the partial derivative, the integration constant can in
principle depend on y and z.
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We can use (5.18b) to determine a condition the A(y, z) introduced in (5.19):

3ax(z2 − y2) =
∂V

∂y
= 3axz2 − 3xy2 +

∂A

∂y
(5.20)

we solve this to find
∂A

∂y
= 0 (5.21)

Now, ordinarily we’d integrate this, and get an integration “constant” which depends only on
z, but here life is easier because the partial derivative vanishes, so there is no y dependence
in A(y, z):

A(y, z) = B(z) (5.22)

and thus
V (x, y, z) = axy(3z2 − y2) +B(z) (5.23)

Now we do the same thing as before, applying (5.18c) to (5.23) to find

6axyz =
∂V

∂z
= 6axyz +

dB

dz
(5.24)

or
dB

dz
= 0 (5.25)

Again, we’d normally have to do an integral here, but this time, it’s just telling us that B(z)
is a constant

B(z) = C (5.26)

i.e.,
V (x, y, z) = axy(3z2 − y2) + C (5.27)

Note that in this case, the constant is just the value of the potential at the origin:

V (0, 0, 0) = C (5.28)

so that
V (x, y, z) = V (0, 0, 0) + axy(3z2 − y2) (5.29)

Typically in a physical problem, one chooses the constant in a potential so that the potential
is zero at some convenient point, usually the origin or “infinity”.

The same principle applies in non-Cartesian coördinates, except that you have to be
careful about the definition of the gradient. So for example, in spherical coördinates,

~F = Frr̂ + Fθθ̂ + Fφφ̂ = −~∇V = −
(
∂

∂r
+

1

r

∂

∂θ
+

1

r sin θ

∂

∂φ

)
V (r, θ, φ) (5.30)

so

∂V

∂r
= −Fr(r, θ, φ) (5.31a)

∂V

∂θ
= −rFθ(r, θ, φ) (5.31b)

∂V

∂φ
= −r sin θFφ(r, θ, φ) (5.31c)
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and we can then use the same multi-variable calculus technique to find V (r, θ, φ) up to an
additive constant, given its partial derivatives.

A good thing to keep in mind is that vector calculus treats Cartesian and non-Cartesian
coördinate systems differently, but multi-variable calculus does not.

5.4 Application of Potential Energy

If we are dealing with a conservative force field, one which is associated with a potential
energy:

~F = −~∇V (5.32)

then conservation of energy holds just as in one dimension:

T2 − T1 = W1→2 = c

∫
1→2

~F · d~r = − [V (~r2)− V (~r1)] (5.33)

and therefore
T1 + V1 = T2 + V2 (5.34)

At this point, we’ve more or less covered Symon sections 3.1-3.7 (except for the part
about torque in section 3.3), 3.9, and 3.12. Sections 3.10 and 3.11 illustrate some simple
and non-simple applications of the methods (the not-so-simple one also appearing on a
homework), and you should read about these on your own. We will now consider rotational
motion (Symon sections 3.3 and 3.8) which will prepare us for a major sub-topic, central
force motion, which is described in sections 3.13 through 3.16.

6 Rotational Motion

In introductory mechanics, one usually learns about rotation around an axis or rotation in
a plane. In general, rotational motion can be described with vector quantities which deal
with rotations about all possible axes through a given origin. Our goal here is to bridge the
gap between these two descriptions.

6.1 Torque

There are a few different ways to define torque about an axis, but a convenient one for our
purposes is

(Torque about axis) = (Distance from axis)(Perpendicular component of force) (6.1)

where “perpendicular” means “perpendicular to the direction from the point of application
to the closest point on the axis” and also “perpendicular to the axis”. We’ll eventually
want a vector expression for this, but let’s start by looking at it in a convenient coördinate
system. The natural one to use is cylindrical coördinates with the z axis along the axis of
rotation. For a given point, the distance to the axis is the ρ coördinate of that point. The
“perpendicular” direction at that point is the φ direction, so the perpendicular component
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of the force is just Fφ. This means that if we call the torque about the z axis Nz (using N
to stand for torque for reasons which completely escape me),

Nz = ρFφ (6.2)

Notice that this also has the sign we’d like; if Fφ > 0, we are applying positive torque around
the z axis as defined by the right-hand rule.

Now, if we think for a minute about the fact that ρ and Fφ are components of vectors

~F = Fρρ̂+ Fφφ̂+ Fz ẑ (6.3a)

~r = ρρ̂+ zẑ (6.3b)

we’ll realize that the combination ρFφ is just the z component of the cross product ~r × ~F :

ẑ · (~r × ~F ) = ρFφ (6.4)

[Ordinarily there would be another term because ẑ ·( ~A× ~B) = AρBφ−AφBρ, but the position

vector has no φ component: φ̂ · ~r = 0.]
So this means the torque about the z axis is

Nz = ẑ · (~r × ~F ) (6.5)

But now the only reference to the coördinate system is the unit vector ẑ along the z axis
(and the origin implicit in the position vector ~r). So in general we can say that the torque
Nn around some axis through the origin parallel to a constant unit vector n̂ is

Nn = n̂ · (~r × ~F ) (6.6)

Of course, the notation is supposed to be suggestive, and we can encode the torque about
all possible axes through the origin if we define the vector

~N = ~r × ~F (6.7)

which is the torque.

6.2 Angular Momentum

The geometry of the definition of angular momentum is the same. The angular momentum
about an axis is the distance from that axis times the perpendicular component of the
momentum, so working once more in cylindrical coördinates

Lz = ρ pφ (6.8)

Now, since we know that the velocity in cylindrical coördinates is

~v = ρ̇ρ̂+ ρφ̇φ̂+ żẑ (6.9)

we can write
pφ = mvφ = mρφ̇ (6.10)
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to get the perhaps more familiar
Lz = mρ2φ̇ (6.11)

By the same vector argument as we used for torque, we can see that

Lz = ẑ · (~r × ~p) (6.12)

and define a vector angular momentum

~L = ~r × ~p (6.13)

6.3 Relationship of Angular Momentum and Torque

We can use Newton’s second law to show that angular momentum and torque are related in
the same way as linear momentum and force.

d~L

dt
=

d

dt
(~r × ~p) =

d~r

dt
× ~p+ ~r × d~p

dt
(6.14)

Now, the first term is
d~r

dt
× ~p = ~v × (m~v) = m~v × ~v = ~0 (6.15)

while we can use Newton’s second law to make the replacement

d~p

dt
= ~F (6.16)

and thus obtain
d~L

dt
= ~r × ~F = ~N (6.17)

An important special case of this is when the torque vanishes, i.e., ~r × ~F = ~0. Then the
vector angular momentum ~L is a constant of the motion.

7 Central Force Motion

An important physical problem is that of a particle moving in an fixed force field, where
the magnitude of the force is depends only on the distance from a specified point, and the
direction of the force is always either towards or away from the that point. Mathematically,
if we define a spherical coördinate system with the origin at the point in question, this means

~F (~r) = F (r)r̂ (7.1)

Note that F (r) is the r-component of the force ~F and is not the magnitude. In particular,
it can be positive or negative.

The most obvious physical example is that of a planet orbiting a star. It’s a decent
approximation to assume that the star doesn’t move much, and therefore the planet is
moving in the fixed gravitational field of the star:

~F = −GMm

r2
r̂ (7.2)
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We’ll see in chapter four that even if m 6� M we can still describe the two-body problem
exactly in terms of an equivalent one-body problem with a particle orbiting a fixed center of
force.

7.1 Conservation of Energy

It’s easy to show that (7.1) is a conservative force. We could calculate the curl ~∇× ~F , but
it’s actually more straightforward just to construct the potential explicitly. Since the force
is determined by one function of one variable, we can take its indefinite integral with respect
to r:

V (r) = −
∫
F (r) dr (7.3)

We can show explicitly that this is indeed the potential energy by taking its gradient:

− ~∇V = −∂V
∂r

r̂ = F (r)r̂ = ~F (7.4)

This means that the total energy

E = T + V =
1

2
m~v · ~v + V (r) (7.5)

is a constant of the motion.

7.2 Conservation of Angular Momentum

We can also show that the torque (about the origin) associated with this force is zero:

~N = ~r × ~F = (rr̂)× (F (r)r̂) = rF (r)(r̂ × r̂) = ~0 (7.6)

This means that the vector angular momentum

~L = ~r ×m~v (7.7)

is a constant. As a consequence (which we will show):

1. The motion is confined to a plane.

2. There is an additional non-vector constant of the motion

To see that the motion remains confined to a plane, align the coördinate axes so that
initially (at t = 0), both the position and the velocity lie in the xy plane:

z(0) = ẑ · ~r(0) = 0 (7.8a)

vz(0) = ẑ · ~v(0) = 0 (7.8b)

Now define a cylindrical coördinate system and calculate the components of the angular
momentum (at any time) in that system:

~L = m~r × ~v = m

∣∣∣∣∣∣
ρ̂ φ̂ ẑ
ρ 0 z
vρ vφ vz

∣∣∣∣∣∣ = −mzvφρ̂+m(zvρ − ρvz)φ̂+mρvφẑ (7.9)
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We evaluate this at the initial time and see

~L(0) = mρ(0)vφ(0)ẑ (7.10)

where we have used (7.8a) to show that the other components of the angular momentum

vanish. But ~L(0) is a constant of the motion, which means

~L(t) = ~L(0) = mρ(0)vφ(0)ẑ (7.11)

Because we’re working in cylindrical coördinates, we need to be a little careful about just
setting the components of ~L(0) and ~L(t) equal to each other, because the basis vectors ρ̂ and
φ̂ depend on the position, which in turn depends on time. But fortunately the only basis
vector appearing in (7.11) is ẑ, which is a constant, and ρ̂ and φ̂, while they will depend on

t, are always perpendicular to z. This means we can say that ~L(t) has no ρ or φ component,
and that its z component equals that of

−mz(t)vφ(t) = 0 (7.12a)

mz(t)vρ(t)−mρ(t)vz(t) = 0 (7.12b)

mρ(t)vφ(t) = mρ(0)vφ(0) (7.12c)

Now, unless the initial angular momentum vanishes (which would be a special case, where
the particle was initially moving straight towards or away from the origin), the product ρvφ,
which is a constant, would remain non-zero, which means neither ρ nor vφ can be zero. This
means that (7.12a) tells us z(t) = 0 for all time, which in turn tells us, along with (7.12b),
that vz(t) = 0 for all time. In other words, if the motion starts out in the xy plane and the
angular momentum is a constant (which it is for a central force) the motion remains in the
xy plane forever.

We needed two of the components of the conserved angular momentum to tell us this;
the third tells us that

Lz = mρvφ = constant (7.13)

As a consequence of the fact that z ≡ 0 in this coördinate system,

r =
√
ρ2 + z2 ≡ ρ (7.14)

and this is basically a two-dimensional problem described in plane polar coördinates (r, φ).

7.3 The Nature of the Differential Equations

In plane polar coördinates, thanks to the time derivatives

dr̂

dt
= φ̇φ̂ (7.15a)

dφ̂

dt
= −φ̇r̂ (7.15b)
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of the basis vectors, we know the position, velocity and acceleration are

~r = rr̂ (7.16a)

~v = ṙr̂ + rφ̇φ̂ (7.16b)

~a = (r̈ − rφ̇2)r̂ + (rφ̈− 2ṙφ̇)φ̂ (7.16c)

and so using Newton’s second law
~F = m~a (7.17)

we could derive the equations of motion

m(r̈ − rφ̇2) = F (r) (7.18a)

m(rφ̈− 2ṙφ̇) = 0 (7.18b)

These are two second-order ODEs for the two functions r(t) and φ(t), so we could in principle
solve them subject to four initial conditions, e.g., specified values of r(0), ṙ(0), φ(0) and φ̇(0).

However, conservation of energy and angular momentum allows us to cast the problem
more simply. A given trajectory has a given value of E and L, which are related to r(t) and
φ(t) by

E =
1

2
m~v · ~v + V (r) =

1

2
mṙ2 +

1

2
mr2φ̇2 + V (r) (7.19a)

L = mrvφ = mr2φ̇ (7.19b)

These are then, for given values of E and L, two first-order ODES for r(t) and φ(t). Given
E and L plus two initial conditions such as values of r(0), ṙ(0), and φ(0), we can solve them
for r(t) and φ(t).

The explicit formal solution is as follows:
First, we note that since (7.19b) contains only r and φ̇, we can use it to solve for φ̇ and

then remove it from (7.19a):

φ̇ =
L

mr2
(7.20)

and therefore

E =
1

2
mṙ2 +

1

2
mr2

(
L

mr2

)
+ V (r) =

1

2
mṙ2 +

1

2

L2

2mr2
+ V (r) (7.21)

Equation (7.21) is then a single first-order ODE for r(t). We can solve for

ṙ = ±
√

2

m

√
E −

[
V (r) +

L2

2mr2

]
=
dr

dt
(7.22)

which can then be solved by integration∫ r(t)

r(0)

dr√
E −

[
V (r) + L2

2mr2

] =

∫ t

0

√
2

m
dt′ = t

√
2

m
(7.23)

Once we’ve got r(t), we can then plug it into (7.20) and integrate to get

φ(t) = φ(0) +

∫ t

0

φ̇(t′) dt′ = φ(0) +

∫ t

0

L

mr2(t′)
dt′ (7.24)
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7.4 Effective Potential

We’ve just described formally how one could solve a central force motion problem. It may
often turn out, though, that the integrals (7.23) and (7.24) can’t be evaluated in closed
form. It is thus useful to be able to gain more insight into the problem by other methods of
analysis.

Look at the conserved total energy (7.21). Although we started out with a three-
dimensional problem and thus among other things a different expression for the kinetic
energy, the end product actually looks a lot like the energy in a one-dimensional problem.
Recall that this is

E =
1

2
mẋ2 + V (x) (7.25)

while our total energy can be written in the form

E =
1

2
mṙ2 + Veff(r) (7.26)

where

Veff(r) = V (r) +
L2

2mr2
(7.27)

is the so-called “effective potential”. We’ve reduced our three-dimensional problem to an
equivalent one-dimensional problem where the only complication is the addition to the po-
tential energy of a term, dependent on the angular momentum L, which accounts for the
rotational motion. This is often referred to as the “centrifugal barrier”, since it blows up at
small r.

Equation (7.26) allows us to use all the same methods as we did back in one-dimensional
potential problems, but with Veff as the potential. For example, at a given energy E, the
turning points rt are the solutions to Veff(rt) = E, and a stable equilibrium occurs at a
minimum of Veff. Now, of course, equilibrium means constant r. The angular coördinate φ,
meanwhile, is always changing at a rate

φ̇ =
L

mr2
(7.28)

So the “equilibrium” corresponds to a circular orbit, around which the particle moves at a
constant angular speed. In general, for a given value of L, which fixes a given Veff(r), this
can only occur at particular values of r.

As in the one-dimensional case, if we are near the equilibrium radius re for a given Veff(r),
the r value of the particle will oscillate about re with a frequency

ωR ≈
Veff
′′(re)

m
(7.29)

On the other hand, the angular frequency of the azimuthal motion will be

ωΦ ≈
L

mr2
e

(7.30)

and in general these two will not be the same, so the orbit will not close, leading to something
like Symon’s figure 3.34.
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7.5 Finding the Trajectory

As mentioned above, the integrals (7.23) and (7.24) for r(t) and φ(t) often can’t be evaluated
in closed form. Sometimes it’s easier to find the shape of the orbit r(φ) and not worry about
when the particle reaches which position. For given E and L, we get a first-order equation

dr

dφ
=
ṙ

φ̇
=
±
√

2/m
√
E − V (r)− L2/2mr2

L/2mr2
(7.31)

In practice, it often turns out to be even easier to work in terms of u(φ) = 1/r(φ). This is
because

du

dφ
= − 1

r2

dr

dφ
= − ṙ

r2φ̇
= ∓

√
2[E − V (r)]/m− (L/mr)2]

L/m
= ∓

√
2m[E − V (1/u)]

L2
− u2

(7.32)
We’ll see this in detail when we consider the potential energy which is meaningful for gravity.

7.6 Kepler’s Second Law

In the 17th century, Johannes Kepler discovered three empirical properties of planetary
orbits, which are known as Kepler’s Laws of Planetary Motion. They are:

1. Planetary orbits are in the shape of ellipses with the Sun at one focus.

2. A planet moves around its orbit at such a rate that the line from the planet to the Sun
sweeps out equal areas in equal intervals of time.

3. The cube of the semimajor axis of a planet’s orbit is proportional to the square of its
orbital period.

Isaac Newton subsequently used these laws to deduce the nature of the gravitational in-
teraction. The first and third laws turn out to be consequences of the particular spatial
dependence of the gravitational interaction, but the second holds for any central force, being
a consequence of the conservation of angular momentum.

This can be seen by considering the wedge swept out in a time dt. For sufficiently small
time, the change in radius is negligible, and the area is approximately that of a circular
wedge of radius r and angular extent dφ = φ̇ dt. This is approximately a triangle height r
and base r dφ, which has area

dA =
1

2
r(r dφ) =

1

2
r2φ̇ dt =

L

2m
dt (7.33)

and since L is a constant for a central force, so is

dA

dt
=

L

2m
(7.34)
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8 Inverse-Square-Law Forces

A very useful special case of a central force is one inversely proportional to the square of the
distance:

F (r) =
K

r2
(8.1)

For example, the gravitational force on a particle of mass m due to a point source of mass
M fixed at the origin is of this form with K = −GMm.

The potential energy corresponding to this force is

V (r) = −
∫
K

r2
dr =

K

r
+ const (8.2)

The conventional choice of the zero of the potential sets the constant to zero:

V (r) =
K

r
(8.3)

this has the property that V (∞) = 0.

8.1 Finding the Turning Points

We can examine the behavior by looking at the effective potential

Veff(r) =
K

r
− L2

2mr2
(8.4)

At small r, as long as L 6= 0, the centrifugal term blows up faster and dominates:

Veff(r)
r→0−→ − L2

2mr2
(8.5)

At large r, the other term goes to zero more slowly, and eventually dominates:

Veff(r)
r→∞−→ K

r
(8.6)

Qualitatively, then we see the behavior:

• If K > 0, the effective potential is positive and repulsive for all r: Veff(r) > 0; Veff
′(r) <

0.

• If K < 0, there is a local minimum re for which V (re) < 0.

If K > 0, the only orbits possible are those with E > 0, which have one inner turning
point rt = rmin at which Veff(rt) = E. (The value of rt will of course depend on E and L.)

If K < 0, there are similarly unbound orbits with E > 0 (actually now E ≥ 0) and a single
turning point, but also orbits with E < 0, which have two turning points rmin < re < rmax

at which Veff(rt) = E.
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We write the equation for the turning points as

E =
K

rt
+

L2

2mr2
t

(8.7)

Again, it turns out to be easier to work in terms of u = 1/r, in which case the turning points
are given by

L2

2m
u2
t +Kut − E = 0 (8.8)

or

u2
t +

2mK

L2
ut −

2mE

L2
= 0 (8.9)

The solutions to this quadratic equation are

ut = −2mK

L2
±

√(
2mK

L2

)2

+
2mE

L2
= −2mK

L2

(
1±

√
1 +

2EL2

mK2

)
(8.10)

Note that if

E < −mK
2

2L2
(8.11)

both roots are imaginary, which corresponds to an energy below the minimum of the effective
potential.

While we’re at it. we should check that the dimensions work out:[
2EL2

mK2

]
=
E(MVR)2

M [K]2
(8.12)

The units of the coupling constant can be deduced from[
K

r

]
= E (8.13)

so [
2EL2

mK2

]
=
E(MVR)2

M(ER)2
=
MV 2

E
= 1 (8.14)

which is what we expect, and[
2mK

L2

]
=

MER

(MVR)2
=

E

MV 2R
=

1

R
(8.15)

which also what we need as the units of u.
To make life easier, we’ll concentrate on the case of an attractive force K < 0 and define

the positive constants

α = − L2

2mK
(8.16a)

ε =

√
1 +

2EL2

mK2
(8.16b)

so that
ut = α−1 (1± ε) (8.17)

Now, note that
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• If E < 0, ε < 1 and both roots are positive, meaning there are two turning points, as
we expect:

– The maximum value of u, which corresponds the the minimum value of r, the
closest approach of the particle to the origin, which is known as periapse, is

up = α−1(1 + ε) (8.18)

– The minimum value of u, which corresponds the the maximum value of r, the
farthest displacement of the particle from the origin, which is known as apoäpse,
is

ua = α−1(1− ε) (8.19)

• If E = 0, ε = 1 and one root is zero, meaning that the minimum value of u is zero and
the maximum value of r is infinite, so there is no apoäpse, and the periapse is still

up = α−1(1 + ε) (8.20)

• If E > 0, ε > 1 and one root is negative, meaning that the minimum allowed value of
u is still zero and the maximum allowed value of r is still infinite, so as in the marginal
E = 0 case, there is no apoäpse and the periapse is located at

up = α−1(1 + ε) (8.21)

8.2 Finding the Trajectory

Now we’d like to do the integral to find u(φ) and thus r(φ). In all three cases, du
dφ

vanishes

at the periapse up = α−1(1 + ε), so let’s use that as our lower limit of integration. Let’s take
the upper limit of integration to be some φ > φp between the two turning points, so that
du
dφ
≤ 0 (since up is the maximum value of u) and

φ− φp =

∫ φ

φp

dφ′ =

∫ u(φ)

up

du

du/dφ
= −

∫ u(φ)

(1+ε)/α

du√
2m(E−Ku)

L2 − u2

(8.22)

where we have used V (r) = K
r

= Ku.
Now, the integral will look a lot simpler if we substitute for E and L in terms of α−1 and

ε. We can do the algebra using the definitions (8.16), but in fact we should be able to see
that the argument in the square root must be

2m(E −Ku)

L2
− u2 = (u+ − u)(u− u−) (8.23)

where
u± = α−1(1± ε) (8.24)

This is because we got u± in the first place by setting the quadratic expression appearing
inside the square root to zero, so it has to vanish if u = u+ or u = u−. After that, it’s just a
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question of getting the right coëfficient (i.e., −1) for the u2 term. (If you don’t believe me,
you can do the algebra and check.)

Anyway,

(u+−u)(u−u−) = −u2 +(u+ +u−)−u+u− = −u2 +2α−1u−α−2(1−ε2) = α−2ε2−(α−1−u)2

(8.25)
so

φ− φp = −
∫ u(φ)

α−1(1+ε)

du√
α−2ε2 − (α−1 − u)2

(8.26)

This is a doäble integral; making the identification x = α−1 − u, it’s of the form∫
dx

a2 − x2
(8.27)

which calls for the trigonometric substitution

x = a sin θ (8.28)

so in our case, we want to define a new integration variable ψ by

α−1 − u = α−1ε sinψ (8.29)

In that case,
− du = α−1ε cosψ dψ (8.30)

and √
α−2ε2 − (α−1 − u)2 = α−1ε

√
1− sin2 ψ = α−1ε sinψ (8.31)

We’ll see we’re justified in calling this cosψ and not − cosψ when we consider the limits of
integration. The lower limit ψp obeys

sinψp =
α−1 − α−1(1 + ε)

α−1ε
= 1 (8.32)

so if we use
ψp =

π

2
≤ ψ ≤ −π

2
(8.33)

we’re justified in assuming that cosψ ≥ 0.
Putting it all together, the integral is

φ− φp =

∫ sin−1

(
α−1−u(φ)
α−1ε

)
π/2

dψ = sin−1

(
α−1 − u(φ)

α−1ε

)
− π

2
(8.34)

or, to solve for u(φ),

α−1 − u(φ)

α−1ε
= sin

(π
2

+ φ− φp
)

= cos(φ− φp) (8.35)
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which can be solved to give

u(φ) =
1 + ε cos(φ− φp)

α
(8.36)

or, in terms of the radial coördinate,

r(φ) =
α

1 + ε cos(φ− φp)
(8.37)

Note that while our definition made some simplifying assumptions about where in the orbit
we were, the solution actually holds in general.

8.3 Orbits in an Inverse-Square Force Field

Equation (8.37) is the equation, in polar coördinates, of a conic section of eccentricity ε and
latus rectum α. Specifically

• If ε > 1, this is a hyperbola with one focus at the origin

• If ε = 1, this is a parabola with its focus at the origin

• If ε < 1, this is an ellipse with one focus at the origin

This is basically Kepler’s first law. Kepler only looked at planetary orbits, so he only saw the
ellipses. Long-period comets have approximately parabolic orbits, while a piece of interstellar
debris on a ballistic trajectory around the Sun would have a hyperbolic orbit.

If we focus on the ε < 1 case, it’s useful to define the semimajor axis

a =
α

1− ε2
(8.38)

so that the equation of the orbit is

r(φ) =
a(1− ε2)

1 + ε cos(φ− φp)
(8.39)

The distances from the origin of periapse and apoäpse are

rp =
a(1− ε2)

1 + ε
= a(1− ε) (8.40a)

ra =
a(1− ε2)

1− ε
= a(1 + ε) (8.40b)

So that
rp + ra = 2a (8.41)

and the semimajor axis is just half the width of the ellipse at its widest point.
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A Appendix: Correspondence to Class Lectures

Date Sections Pages
2003 October 9 1–1.4 2–6
2003 October 16 1.5–1.7 7–7
2003 October 21 2–3.1 7–7
2003 October 23 3.2–4.2.1 7–9
2003 October 28 4.3–5.2 9–13
2003 October 29 5.3–6.3 13–17
2003 October 30 7–7.4 17–21
2003 November 4 7.3–8 20–23
2003 November 6 8.1–8.3 23–27
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