
Physics A300: Classical Mechanics I

Problem Set 9

Assigned 2002 November 25
Due 2002 December 4

Show your work on all problems!

1 Tidal Acceleration in Cartesian Coördinates

a) In class, we showed that the tidal gravitational acceleration at a point ~x with standard Carte-
sian coördinates r, θ, φ due to a point mass M a distance r′ � r away in the z direction
was

δ~g(~x) =
GM

r′3
r (2 cos θ~ez − sin θ [cosφ~ex + sinφ~ey])

Express δ~g(~x) as a function of the Cartesian coördinates

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

b) Now suppose that the external mass is a distance r′ away in the x direction. By analogy with
the previous case, write the resulting tidal field in Cartesian coördinates.

c) Now suppose that the external mass is a distance r′ away in the y direction. By analogy with
the previous cases, write the resulting tidal field in Cartesian coördinates.
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2 Lunar and Solar Tides

Consider the case where a planet of radius r (centered at the origin of coördinates) is deformed by
two external point masses: M1 located a distance r′1 � r away and M2 located a distance r′2 � r
away.

a) If both masses located along the x axis, use the results of problem 1 to write the tidal field
δ~g(x, y, z) at the surface of the planet in Cartesian coördinates.

b) If the first mass is on the x axis and the second mass is on the y axis, what is the tidal field
in Cartesian coördinates?

c) A spring tide occurs at the new or full moon, when the Sun, Earth, and Moon all lie on a line;
a neap tide occurs at first or last quarter, when the Earth-Sun direction is perpendicular to
the Earth-Moon direction. Using the masses of the Sun and Moon, and their distances from
the Earth, calculate the ratio of the Moon-directed component of the tidal field at spring and
neap tides.

d) Calculate the ratio of the gravitational field at the center of the the Earth due to the Sun and
Moon; calculate the ratio of the strengths of the tidal gravitational effects on the Earth due
to the Sun and the Moon.

3 Equilibrium Tidal Height

a) Using the results of problem 1, find the tidal gravitational potential ϕtidal(~x) which gives

δ~g(~x) = −~∇ϕtidal

where δ~g(~x) is the gravitational tidal field of a point mass m (we called this M before, but in
this problem we want to use M for something else) located at a position ~x′ = r′~ez. Express
this scalar field in spherical coördinates.

b) Imagine a planet which is deformed such that its radius is not R, but R+ h
2
(3 cos θ− 1). The

gravitational potential energy associated with the deformation is

U(h) = ρ

∫ 2π

0

∫ π

0

∫ R+h
2
(3 cos θ−1)

R

ϕ(r, θ, φ) r2 sin θ dr dθ dφ

where ρ is the density of the planet, assumed to be constant. Calculate the contribution
Utidal(h) to this potential energy from the tidal potential, keeping terms up to order h2.

c) Let the planet have a mass M and assume this is concentrated at the center. What is the
gravitational potential ϕself corresponding to the planet’s gravitational field? Calculate the
contribution Uself(h) to the gravitational potential energy arising from the potential ϕself, again
keeping terms up to order h2.

d) Find the tidal height h which minimizes the total potential energy Utidal(h) + Uself(h).
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4 Snell’s Law from Fermat’s Principle

Note: There is a similar problem solved in the Student Solutions Manual. Transcriptions of that
solution will receive zero credit. The problem as stated here is actually simpler than the one in the
book, and thus the solution is more straightforward.

Fermat’s principle states that light travels along the path which takes the shortest time. Use
this to derive Snell’s Law of Refraction as follows:

Consider two media with indices of refraction n1 and n2, respectively. Light travels in the first
with a speed c/n1 and in the second with a speed c/n2. Now consider a planar interface between
these two media. Let a light ray travel from a point A in the first medium a distance Y from the
interface to a point B in the second medium a distance Y from the interface and a distance D along
the interface from A. Suppose the path consists of a straight line from A to a point C a distance X
along the interface, then a straight line to B.

In terms of X, Y , and D, along with c, n1, and n2, write

a) The distance from A to C

b) The distance from C to B

c) The time light takes to travel from A to C at a speed c/n1

d) The time light takes to travel from C to B at a speed c/n2

e) The total time light takes to travel along this path from A to B via C.

Consider the total time as a function of X and determine an equation which is satisfied when
the total time is minimized (you don’t need to solve this for X).

Write sin θ1 and sin θ2 (see figure) in terms of X, Y , and D, and use this to eliminate X, Y , and
D from the minimum time condition. Show that this gives Snell’s law

n1 sin θ1 = n2 sin θ2
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