Physics A300: Classical Mechanics I

Problem Set 3

Assigned 2002 September 16
Due 2002 September 23

Show your work on all problems!

1 Volume Integral (M \& T 1-37)

Find the value of the integral

$$
\oiiint_{S} \vec{A} \cdot d^{2} \vec{a}
$$

where

$$
\vec{A}=\left(x^{2}+y^{2}+z^{2}\right)\left(x \vec{e}_{x}+y \vec{e}_{y}+z \vec{e}_{z}\right)
$$

and the surface \mathcal{S} is a sphere of radius R centered on the origin. Do the integral
a) directly, and also
b) by using Gauss's theorem

2 Curls and Gradients

2.1 Curl of a Gradient

Let φ be any scalar field and consider the vector field

$$
\vec{\nabla} \times(\vec{\nabla} \varphi)
$$

Write the expression for the i th component of this vector field using the Levi-Civita symbol $\varepsilon_{i j k}$ and, use a standard property of partial derivatives to simplify the expression. Write your final result in vector notation.

2.2 Integral of a Gradient Around a Closed Loop

Consider a curve \mathcal{C}_{1} which begins at point P and ends at point Q and another curve \mathcal{C}_{2} which begins at Q and ends at P. Let \mathcal{C} be the closed curve which goes from P to Q along \mathcal{C}_{1}, then comes back from Q to P along \mathcal{C}_{2}. Calculate the integral

$$
\oint_{\mathcal{C}} \vec{\nabla} \varphi \cdot d \vec{\ell}
$$

of an arbitrary scalar field φ along the closed curve \mathcal{C} by two methods:
a) Break up the integral along C into the piece along C_{1} and the piece along C_{2}, evaluate each separately, and combine them:

$$
\oint_{\mathcal{C}} \vec{\nabla} \varphi \cdot d \vec{\ell}=\int_{\mathcal{C}_{1}} \vec{\nabla} \varphi \cdot d \vec{\ell}+\int_{\mathcal{C}_{2}} \vec{\nabla} \varphi \cdot d \vec{\ell}
$$

(You should be able to simplify this expression.)
b) Let \mathcal{S} be any surface whose boundary $\partial \mathcal{S}$ is \mathcal{C}, use Stokes's theorem to rewrite the line integral along \mathcal{C} as a surface integral over \mathcal{S}, and evaluate that integral.

Verify that the two methods give the same answer.

3 Drill Problem on Dimensional Analysis

3.1 Dimensionally Meaningful Expressions

Which of the following expressions or relations are sensible from a dimensional point of view? For the ones which don't, state the reason why not.
a) $5 \mathrm{~m}+100 \mathrm{in}$
b) $40 \mathrm{~cm}+100 \mathrm{~kg}$
c) $x<5$ where x is a length
d) $F=m x^{2}$ where F is a force, m is a mass, and x is a length
e) $\ddot{x}=g \sin t$ where x is a coördinate distance, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, and t is a time
f) $m v^{2}-5 G \frac{M m}{r}$ where m and M are masses, r is a length, and $G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$

3.2 Conversion of Units

Convert the following expressions into the units requested
a) $\frac{15 \mathrm{~cm}+45 \mathrm{~m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}$ expressed in nanoseconds $\left(1 \mathrm{~s}=10^{9} \mathrm{~ns}\right)$ (Your answer should be exact)
b) $1.25 \mathrm{in} / \mathrm{yr}$ expressed in centimeters per second. (Your answer should be written to three significant figures.)

$4 \quad$ (M \& T 2-17)

A softball player hits the ball at a height of 0.7 m above home plate. The ball leaves the bat travelling in a direction which makes an angle 35° with the horizontal, and sails towards a fence 2 m high and 60 m away in centerfield. What must the initial speed of the softball be to clear the centerfield fence? Ignore air resistance, and take the acceleration of gravity to be $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

