Physics A300: Classical Mechanics I

Problem Set 1

Assigned 2002 August 28
Due 2002 September 4 (accepted thru September 6)

Show your work on all problems! Note that the answers to the first problem are in the appendix of Marion \& Thornton, but they should only be used to check your work, since the answers themselves are an insufficient solution to the problem.

1 Drill Problem on Matrix Operations (M \& T 1-14)

Consider the matrices

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 3 & 1 \\
2 & 0 & 1
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & -1 & 2 \\
1 & 1 & 3
\end{array}\right) \quad \mathbf{C}=\left(\begin{array}{ll}
2 & 1 \\
4 & 3 \\
1 & 0
\end{array}\right)
$$

Calculate:
a) The determinant $\operatorname{det} \mathbf{A B}$
b) AC
c) ABC
d) $\mathbf{A B}-\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$

2 Drill Problem on Vector Operations

2.1 M \& T 1-9

Consider the vectors

$$
\vec{A}=\vec{e}_{1}+2 \vec{e}_{2}-\vec{e}_{3} \quad \vec{B}=-2 \vec{e}_{1}+3 \vec{e}_{2}+\vec{e}_{3}
$$

Calculate:
a) $\vec{A}-\vec{B}$ and its magnitude $|\vec{A}-\vec{B}|$
b) The component of \vec{B} along \vec{A}
c) The angle between \vec{A} and \vec{B}
d) $\vec{A} \times \vec{B}$
e) $(\vec{A}-\vec{B}) \times(\vec{A}-\vec{B})$

3 Properties of Rotation Matrices

3.1 Composition

Show that if \mathbf{R}_{1} and \mathbf{R}_{2} are orthogonal ($\boldsymbol{\Lambda}^{\mathrm{T}}=\boldsymbol{\Lambda}^{-1}$) and unimodular ($\operatorname{det} \boldsymbol{\Lambda}=1$), then their product $\mathbf{R}=\mathbf{R}_{1} \mathbf{R}_{2}$ also satisfies both of these properties.

3.2 Rotations About Coördinate Axes

a) Write the matrices $\mathbf{R}_{1}\left(\theta_{1}\right), \mathbf{R}_{2}\left(\theta_{2}\right)$, and $\mathbf{R}_{3}\left(\theta_{3}\right)$ describing rotations of θ_{1}, θ_{2} and θ_{3} about the $x_{1^{-}}, x_{2^{-}}$, and $x_{3^{-}}$-axes, respectively.
b) Show explicitly that each of them is an orthogonal matrix (its transpose is equal to its inverse) and unimodular (its determinant equals one).

4 A Meaningful Vector Identity (M \& T 1-24)

Let \vec{A} be an arbitrary vector, and let \vec{e} be a unit vector (i.e., a vector such that $\vec{e} \cdot \vec{e}=1$) in some fixed direction.
a) Show that

$$
\vec{A}=\vec{e}(\vec{A} \cdot \vec{e})+\vec{e} \times(\vec{A} \times \vec{e})
$$

b) What is the geometrical significance of each of the two terms in the expansion?

Note: you may use the results of any of the previous book problems (1-1 to 1-23) in the demonstration.

