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In Chapter Two we applied Newton’s laws to a number of elementary situations, and
found the equation of motion and a few properties of the system in each case. In this
chapter, we’re basically going to study a single equation of motion in detail, and learn about
many properties of its solutions. But we’ll build up to the full equation, studying a couple
of simpler versions of it first.

1 The Simple Harmonic Oscillator

The parts of chapter three with which we’ll concern ourselves all describe one-dimensional
systems. In the case of conservative force fields, the vector Newton’s second law simplifies
into a differential equation for the trajectory x(t):

mẍ = F (x) (1.1)

In one dimension, we can always describe the force in terms of a potential U(x):

F (x) = −U ′(x) (1.2)

Note that as always, adding a constant to the potential energy would not change the force.
Now, when you’ve learned about harmonic oscillators, you’ve probably started with some-

thing called Hooke’s Law:
FHooke(x) = −kx (1.3)

which was probably described as a special property of springs. But actually, Hooke’s Law is
an approximation to just about any force field sufficiently close to a stable equilibrium. To
see that, integrate the force to get the potential (arbitrarily defining the potential energy at
x = 0 to be zero)

UHooke(x) =
1

2
kx2 (1.4)

we will see that this is generally a good approximation in some region near a stable equilib-
rium.

∗Copyright 2002, John T. Whelan, and all that

1



Consider a generic one-dimensional potential U(x); since F (x) = −U ′(x), an equilibrium
point, at which F (xeq) = 0 corresponds to an extremum of U(x), i.e., U ′(xeq) = 0. Now, for
this to be a stable equilibrium, it should be a local minimum rather than a local maximum
of U(x). This is because we’d like the force to push us towards the equilibrium, so F (xeq +
δx) = δxF ′(xeq) = −δxU ′′(xeq) is positive if δx < 0 and negative if δx > 0. This means
U ′′(xeq) > 0. Now, choose the origin of the coördinate so that the equilibrium point of
interest lies at x = 0. Also exploit the arbitrary freedom to add a constant to the potential,
and set U(0) = 0. Then if we do a Taylor expansion of U(x) about x = 0, we’ll find

U(x) =

0 by def’n︷︸︸︷
U(0) +x

0 for equilibrium︷ ︸︸ ︷
U ′(0) +

x2

2

> 0 by stability︷ ︸︸ ︷
U ′′(0) +

x3

6
U ′′′(0) + . . . (1.5)

So for small enough x, i.e.,

x�3U ′′(0)

U ′′′(0)
(1.6a)

x�12U ′′(0)

U ′′′′(0)
(1.6b)

etc

the potential is well approximated by

U(x) ≈ 1

2
kx2 (1.7)

where
k = U ′′(0) > 0 (1.8)

which is just the harmonic oscillator potential.
Returning to the equation of motion

mẍ = F (x) = −kx (1.9)

we can write this as
ẍ+ ω2

0x = 0 (1.10)

where we have defined
ω0 =

√
k/m (1.11)

To obtain the general solution to (1.10), we note that it’s a second order linear differential
equation, which means it has two important properties.

• If x1(t) and x2(t) are solutions, then the superposition c1x1(t) + c2x2(t) is also, for any
constants c1 and c2.

• If we have two linearly independent solutions x1(t) and x2(t), then any solution can be
written as a superposition of those two.
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To find the needed two independent solutions, we try a solution of the form

x(t) = cert (1.12)

differentiating gives

ẋ(t) =crert (1.13a)

ẍ(t) =cr2ert (1.13b)

so (1.10) becomes, for this candidate solution,

cr2ert + ω2
0ce

rt = 0 (1.14)

Dividing by cert, we have
r2 + ω2

0 = 0 (1.15)

now, the two solutions to this are
r = ±iω0 (1.16)

which would make the general solution

x(t) = c+e
iω0t + c−e

−iω0t (1.17)

Now, this looks funny, since it involves complex numbers, and our physical x(t) will have to
be real. But if we choose c± carefully, we can ensure that x(t) is indeed real. The key is the
Euler relation

eiθ = cos θ + i sin θ (1.18)

which allows us to write

x(t) = c+(cosω0t+ i sinω0t) + c−(cosω0t− i sinω0t) = (c+ + c−) cosω0t+ i(c+ − c−) sinω0t
(1.19)

Now, if we define new constants

Ac =c+ + c− (1.20a)

As =i(c+ − c−) (1.20b)

and require that Ac and As be real, we can give the general real solution

x(t) = Ac cosω0t+ As sinω0t (1.21)

in terms of arbitrary real constants Ac and As. A slightly more useful set of constants can
be obtained by defining A ≥ 0 and φ so that

Ac =A cosφ (1.22a)

As =A sinφ (1.22b)

with this definition, we have

x(t) = A cosω0t cosφ+ A sinω0t sinφ = A cos(ω0t− φ) (1.23)

Note that this is at a maximum when ω0t = φ, and the maximum value is A. A is called the
amplitude and φ the phase of the oscillation.
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1.1 Potential and Kinetic Energy of the Simple Harmonic Oscil-
lator

Our starting point was

U(x) =
1

2
kx2 =

1

2
mω2

0x
2 (1.24)

Using the trajectory gives

U(x(t)) =
1

2
mω2

0A
2 cos2(ω0t− φ) (1.25)

The kinetic energy is

T (ẋ) =
1

2
mẋ2 (1.26)

differentiating the trajectory gives

ẋ(t) = −Aω0 sin(ω0t− φ) (1.27)

and so

T (ẋ(t)) =
1

2
mω2

0A
2 sin2(ω0t− φ) (1.28)

Combining the two, we find the total energy

E = U + T =
1

2
mω2

0A
2[cos2(ω0t− φ) + sin2(ω0t− φ)] =

1

2
mω2

0A
2 (1.29)

which is a constant, as it should be for a conservative system.

2 The Damped Harmonic Oscillator

The next level of complexity we introduce into the system is a retarding force. You might
expect us to use something like kinetic friction, with an image of a block on the end of a
spring sliding along a surface, but instead we add what is called viscous damping:

Fdamping = −bẋ (2.1)

This is the kind of resisting force you get when moving through a viscous medium like oil or
honey, and the usual physical image is to have the mass on a spring attached to some sort
of apparatus which moves an object through a sealed pot of oil (this was for some reason
described as chicken fat when I was a student), generating the damping force described by
(2.1).

This is not a terribly common sort of damping in what you’d think of as traditional
mechanical systems, but it does come up in more complicated oscillations, and it’s the
natural resisting term in the analogous electric circuit. Of course, the real reason we talk
about it here is that it’s linear in the velocity, so it keeps the differential equation linear.

Putting together the restoring force and the damping force, the one-dimensional equation
of motion becomes

mẍ = −bẋ− kx (2.2)
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As before, we divide by m and define the natural frequency

ω0 =
√
k/m (2.3)

We also define a damping parameter with units of inverse time

β =
b

2m
(2.4)

Note the factor of two, which will make things more convenient later. The ODE becomes

ẍ+ 2βẋ+ ω2
0x = 0 (2.5)

This is another second order linear differential equation, so we apply the same strategy
to find two independent solutions, guessing the form

x(t) = cert (2.6)

This makes the differential equation

cr2ert + 2βrcert + ω2
0ce

rt = 0 (2.7)

Again, we can divide by cert to get

r2 + 2βr + ω2
0 = 0 (2.8)

Applying the quadratic equation gives the solutions

r± = −β ±
√
β2 − ω2

0 (2.9)

If β 6= ω0 this will give us our two independent solutions; we’ll handle the β = ω0 case later.
Clearly, the nature of the two solutions will depend on the sign of β2 − ω2

0. We give names
to the three situations as follows

β2 − ω2
0 < 0 Underdamped

β2 − ω2
0 = 0 Critically damped

β2 − ω2
0 > 0 Overdamped

2.1 Underdamped Oscillations

In this case,
√
β2 − ω2

0 is an imaginary number, so we define

ω1 =
√
ω2
0 − β2 (2.10)

so that
r± = −β ± iω1 (2.11)

Now the general solution is

x(t) = c+e
r+t + c−e

r−t = c+e
−βteiω1t + c−e

−βte−iω1t (2.12)
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Again, we use the Euler relation to write

x(t) =c+e
−βt(cosω1t+ i sinω1t) + c−e

−βt(cosω1t− i sinω1t)

=(c+ + c−)e−βt cosω1t+ i(c+ − c−)e−βt sinω1t
(2.13)

and define new real constants

Ac =c+ + c− (2.14a)

As =i(c+ − c−) (2.14b)

which gives us a solution

x(t) = Ace
−βt cosω1t+ Ase

−βt sinω1t (2.15)

And as before we can define A and φ by

Ac =A cosφ (2.16a)

As =A sinφ (2.16b)

which gives us a general solution

x(t) = Ae−βt cos(ω1t− φ) (2.17)

Note that this differs from the solution from the undamped oscillator only in that the oscil-
lations are multiplied by the decaying exponential e−βt, and in that the oscillation frequency
is

ω1 =
√
ω2
0 − β2 (2.18)

In the limit β → 0, ω1 → ω0 and we get back the undamped solution, as we must.

2.1.1 Example: Choosing a Particular Solution to Match Initial Conditions

To give an example of how to set the values of A and φ if we’re given initial conditions for
the problem, suppose we’re told to consider an underdamped oscillator with spring constant
mω2

0 and damping parameter 2mβ, which is released from rest at a position x0 away from
equilibrium. We know the general solution is given by (2.17), and its derivative is

ẋ(t) = −βAe−βt cos(ω1t− φ)− ω1Ae
−βt sin(ω1t− φ) (2.19)

That means that the general solution has

x(0) = A cos(−φ) = A cosφ (2.20a)

ẋ(0) = −βA cos(−φ)− ω1A sin(−φ) = A(ω1 sinφ− β cosφ) (2.20b)

so we need to determine A and φ from

x0 = A cosφ (2.21a)

0 = A(ω1 sinφ− β cosφ) (2.21b)
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Equation (2.21b) tells us
ω1 sinφ = β cosφ (2.22)

or

tanφ =
β

ω1

(2.23)

Now, to substutite this back into (2.21a), we need to define cosφ in terms of tanφ. We can
do this by using one of the only three trig identities we need to memorize:

cos2 φ+ sin2 φ = 1 (2.24)

We divide both sides by cos2 φ to get

1 + tan2 φ =
1

cos2 φ
(2.25)

or

cosφ =
1

±
√

1 + tan2 φ
(2.26)

we’re justified in taking the positive square root in this case, because we can take A to have
the same sign as x0 in (2.21a).

Now, consider √
1 + tan2 φ =

√
1 +

β2

ω2
1

. (2.27)

For the most part, life is simplified by not writing out ω1 =
√
ω2
0 − β2 explicitly, but here

it’s squared, so it actually helps a little:

1

cosφ
=
√

1 + tan2 φ =

√
1 +

β2

ω2
1

=

√
1 +

β2

ω2
0 − β2

=

√
ω2
0 − β2

ω2
0 − β2

+
β2

ω2
0 − β2

=

√
ω2
0

ω2
0 − β2

=
ω0

ω1

.

(2.28)

So this means
cosφ =

ω1

ω0

(2.29)

(As a sanity check, note that by definition ω1 ≤ ω0.) It’s then easy to see that

sinφ = tanφ cosφ =
β

ω0

(2.30)

We can now substitute into (2.21a) to get

x0 = A cosφ = A
ω0

ω1

(2.31)

or
A =

ω0

ω1

x0 (2.32)
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Now, we know A and φ, so we can substitute them into (2.17), but the answer will be a little
awkward in the form

x(t) = x0
ω0

ω1

e−βt cos

(
ω1t− tan−1

[
β

ω1

])
; (2.33)

since we know cosφ and sinφ, it’s nicer to write

x(t) =A cos(ω0t− φ) = A(cosω1t cosφ+ sinω1t sinφ) = x0
ω0

ω1

e−βt
(
ω1

ω0

cosω1t+
β

ω0

sinω1t

)
=x0e

−βt
(

cosω1t+
β

ω1

sinω1t

)
.

(2.34)

Of course, this makes us see in retrospect that it would have been easier to start from the
form (2.15), but we did learn some interesting things along the way about the phase angle
in this case.

Finally, since the statement of the problem talked about ω0 and β, but not ω1, we should
be sure to define what we mean by ω1, when presenting the answer, so we say:

x(t) = x0e
−βt
(

cosω1t+
β

ω1

sinω1t

)
where ω1 =

√
ω2
0 − β2 (2.35)

2.2 Overdamped Oscillations

Turning to another general class of solution, consider the case when β2 − ω2
0 > 0. In this

case the two roots

r± = −β ±
√
β2 − ω2

0 (2.36)

are real. If we define

β1 =
√
β2 − ω2

0 < β (2.37)

we have
r± = −(β ∓ β1) < 0 (2.38)

and the general solution
x(t) = c+e

−(β−β1)t + c−e
−(β+β1)t (2.39)

This does not oscillate, but has two terms which go to zero at different rates. (It can,
however, change sign once or twice if c+ and c− have different signs.)

An overdamped oscillator has “too much” damping in the sense that if it starts off out
of equilibrium, the damping force can resist the motion so much that it takes a long time
to get back to equilibrium. An example would be a door that takes forever to close because
the pneumatic cylinder provides too much resistance.
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2.3 Critically Damped Oscillations

We turn at last to the special case β = ω0. In this case our attempt to find two independent
solutions of the form

x(t) = cert (2.40)

fails, because r solves the quadratic equation

0 = r2 + 2βr + β2 = (r + β)2 (2.41)

which has only one solution, r = β
It’s thus necessary to cast a wider net in looking for a pair of independent solutions, and

it turns out that what works is

x(t) = (c0 + c1t)e
−βt (2.42)

We can verify that this is a solution for all c0 and c1; differentiating gives

ẋ(t) = (−βc0 + c1 − c1βt)e−βt (2.43)

and differentiating again gives

ẍ(t) = (β2c0 − βc1 − c1β + c1β
2t)e−βt (2.44)

So that

ẍ+ 2βẋ+ β2 =
(
c0(β

2 − 2β2 + β2) + c1(β
2t+ 2β − 2β2t− 2β + β2t)

)
= 0 (2.45)

3 The Forced, Damped Harmonic Oscillator

To add the last major feature to the equation we’ve been studying this chapter, we add an
exernal driving force of the form

Fdriving = F0 cosωt (3.1)

with some given amplitude F0 and frequency ω. (The choice of cosine rather than sine is
somewhat arbitrary, but as we saw on the exam, the phase of the trig function can be chosen
by making a convenient choice of the origin of the time coördinate.) The equation of motion
for the oscillator is now

mẍ = FHooke + Fdamping + Fdriving = −kx− bẋ+ F0 cosωt (3.2)

defining ω0 =
√
k/m and β = b/2m as before, and also

Ain =
F0

mω2
0

(3.3)

we get the differential equation

ẍ+ 2βẋ+ ω2
0x = ω2

0Ain cosωt (3.4)

Ain is a nice measure of the amplitude of the driving force, since it’s the amplitude with which
the oscillator would be displaced if the force were applied with ω = 0. It’s also got units
of length, so it can be directly compared to the output with which the oscillator actually
oscillates.
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3.1 Nature of the Differential Equation

The differential equation (3.4) is unlike those we’ve considered so far, in that it is not a
homogeneous linear equation; it has terms which are not linear in x(t) or its derivatives,
so for example x(t) = 0 is not a solution. The good news is, the left-hand side is still
linear, so we can make up the general solution to (3.4) out of a general solution xc(t) to the
corresponding homogeneous equation and any function xp(t) which solves (3.4):

x(t) = xp(t) + xc(t) (3.5)

where

ẍc + 2βẋc + ω2
0xc =0 (3.6a)

ẍp + 2βẋp + ω2
0xp =ω2

0Ain cosωt (3.6b)

We’ve already found a two-parameter family of solutions to (3.6a); it’s just the general
solution for the damped harmonic oscillator, so if we find any solution to (3.6a), their sum
will be a solution to (3.4) with two specifiable constants which can be used to match initial
conditions.

3.2 Solving the Differential Equation

In the usual tradition of Physicists solving differential equations, we guess an answer and see
if it works. A reasonable thing to try is an oscillating solution; we know that if the driving
force keeps going forever, the oscillator will never settle down to zero displacement, so we
should try a solution which just oscillates and doesn’t decay; and since the driving force is
what’s keeping it going, let’s assume it oscillates at that frequency, but not necessarily in
phase. The solution we try is thus

xp(t) = Aout cos(ωt− δ) (3.7)

The output Aout and phase offset δ are not arbitrary; we need to figure out which values are
needed for (3.7) to be a solution to (3.6b).

Now, we could calculate ẋp and ẍp and substitute those into (3.6b) (which is done in the
book) to find out δ and Aout, but it turns out the math is easier if we play a little trick and
use the Euler relation to write

xp(t) = Aout
ei(ωt−δ) − e−i(ωt−δ)

2
=
Aoute

−iδ

2
eiωt︸ ︷︷ ︸

x+(t)

+
Aoute

iδ

2
e−iωt︸ ︷︷ ︸

x−(t)

(3.8)

and

ẍp + 2βẋp + ω2
0xp = ω2

0Ain
eiωt − e−iωt

2
(3.9)

which becomes

ẍ+ + 2βẋ+ + ω2
0x+ + ẍ− + 2βẋ− + ω2

0x− =
ω2
0Ain

2
eiωt +

ω2
0Ain

2
e−iωt (3.10)
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where

x± =
Aoute

∓iδ

2
e±iωt (3.11)

We will have a solution if Aout and δ are chosen so that both of the equations represented
by

ẍ± + 2βẋ± + ω2
0x± =

ω2
0Ain

2
e±iωt (3.12)

are independently satisfied. It may seem that we’ve traded in one real equation for two
complex ones, but note that by construction x+ and x− are complex conjugates, and that
the equations we’re requiring them to satisfy are complex conjugates of each other. So we
can just solve one of them and the other will automatically be satisfied.

We concentrate on x+, noting that

x+ =
Aoute

−iδ

2
eiωt (3.13a)

ẋ+ =iω
Aoute

−iδ

2
eiωt (3.13b)

ẍ+ =− ω2Aoute
−iδ

2
eiωt (3.13c)

Substituting this into the “plus” version of (3.12), we find

(−ω2 + 2iβω + ω2
0)
Aoute

−iδ

2
eiωt =

ω2
0Ain

2
eiωt (3.14)

or, cancelling out the eiωt/2 and rearranging,[
(ω2

0 − ω2) + 2iβω
]
Aoute

−iδ = ω2
0Ain (3.15)

Now, (3.15) is a complex equation, which states that one complex number is equal to
another. Recall that if z = x + iy and w = u + iv are two complex numbers, the complex
equation

z = w (3.16)

is equivalent to the two real equations

x = u (3.17a)

y = v (3.17b)

i.e., if two complex expressions are equal, then the real parts are equal and the imaginary
parts are equal. Another real equation, which is not independent of the other two, is that
the magnitude-squared of the two equations is equal:

z∗z = x2 + y2 = u2 + v2 = w∗w (3.18)

In this case, the most useful pair of equations is the equality of the imaginary parts (which
Aout drops out of) and of the squared magnitudes (which doesn’t involve δ).
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3.2.1 Determination of the Amplitude

The most direct way to find the amplitude Aout is to take the square of the magnitude of
each side of (3.15) by multiplying it by its complex conjugate:{[

(ω2
0 − ω2) + 2iβω

]
Aoute

−iδ}{[(ω2
0 − ω2)− 2iβω

]
Aoute

iδ
}

=
{
ω2
0Ain

}{
ω2
0Ain

}
(3.19)

or [
(ω2

0 − ω2)2 + 4β2ω2
]
Aout

2 = ω4
0Ain

2 (3.20)

which tells us

Aout = Ain
ω2
0√

(ω2
0 − ω2)2 + 4β2ω2

(3.21)

We have chosen to take the positive square root, but this is a reasonable thing to do, since
it just means we choose Aout to have the same sign as Ain. We’ll see that there is always a
choice of δ which makes this work.

3.2.2 Determination of the Phase

To find δ, we concentrate on the imaginary part of (3.15), which can be extracted by writing
it as

ω2
0Ain =

[
(ω2

0 − ω2) + 2iβω
]
Aout(cos δ − i sin δ)

=(ω2
0 − ω2) cos δ + 2βω sin δ + i

[
2βω cos δ − (ω2

0 − ω2) sin δ
]
Aout

(3.22)

the imaginary part of the left-hand side vanishes, so setting the imaginary part of the right-
hand side to zero gives

tan δ =
2βω

ω2
0 − ω2

(3.23)

Now, knowing the tangent of an angle only tells us that angle modulo π (because tan(θ+
π) = cos(θ+ π)/sin(θ+ π) = (− cos θ)/(− sin θ) = tan θ) so we should pause and make sure
we know which branch of the arctangent we want to take when we calculate δ. Fortunately,
once we figure out the value of δ for ω = 0, we can vary ω smoothly, and since we can see
from (3.21) that the amplitude Aout doesn’t go through zero for any ω, we don’t have to
worry about δ suddenly jumping by π.

At ω = 0, (3.23) tells us that tan δ = 0. This means sin δ = 0 and δ = 0 or δ = π
(we’ll choose δ to lie between −π and π, since adding 2π to the phase angle doesn’t affect
anything). But if we look at the real part of (3.15), we see that for ω = 0

ω2
0Ain = 2βω cos δAout (3.24)

Since we have chosen Aout to have the same sign as Ain, cos δ has to be 1 when ω = 0, rather
than −1. Thus the phase lag is zero when ω = 0.

Armed with this knowledge, we can follow the behavior of δ as a function of ω:

ω = 0 sin δ = 0 cos δ = 1 δ = 0
0 < ω < ω0 0 < sin δ < 1 0 < cos δ < 1 0 < δ < π/2
ω = ω0 sin δ = 1 cos δ = 0 δ = π/2
ω > ω0 0 < sin δ < 1 −1 < cos δ < 0 π/2 < δ < π
ω →∞ sin δ → 0 cos δ → −1 δ → π
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This means that sin δ always has the same sign as ω and cos δ always has the same sign as
ω2
0 − ω2, which allows us to use (3.23) and the fact that sin2 δ + cos2 δ = 1 to write

sin δ =
2βω√

(ω2
0 − ω2)2 + 4β2ω2

(3.25a)

cos δ =
ω2
0 − ω2√

(ω2
0 − ω2)2 + 4β2ω2

(3.25b)

3.3 Analysis of the Solution: Amplitude Resonance

Consider the behavior of the output amplitude (3.21) as a function of the driving frequency
ω:

• At ω = 0, Aout = Ain,

• When ω →∞, Aout → 0

To see what happens in between, we take the derivative ∂Aout

∂ω
at constant Ain to see if there

is a maximum output amplitude at some frequency:

∂Aout

∂ω
= −1

2
Ain

ω2
0

[(ω2
0 − ω2)2 + 4β2ω2]

3/2

[
−4ω(ω2

0 − ω2) + 8β2ω
]

(3.26)

This vanishes when
ω2
0 − ω2 = 2β2 (3.27)

i.e.,
ω2 = ω2

0 − 2β2 (3.28)

If 2β2 ≥ ω2
0, there is no maximum for positive ω, and the output amplitude simply

decreases with increasing frequency.
If 2β2 < ω2

0, the amplitude increases with frequency until it reaches a maximum, then
decreases from there on. The maximum occurs at a frequency known as the resonant fre-
quency.

ωR :=
√
ω2
0 − 2β2 (3.29)

If we expand out the contents of the square root in the denominator of (3.21), we see
that

(ω2
0 − ω2)2 + 4β2ω2 = ω4

0 − 2ω2(ω2
0 − 2β2) + ω4 = ω4

0 − 2ω2ω2
R + ω4 (3.30)

and so

Aout = Ain
ω2
0√

ω4
0 − 2ω2ω2

R + ω4
(3.31)

The maximum value of Aout/Ain, which occurs when ω = ωR, is(
Aout

Ain

)
max

=
ω2
0√

ω4
0 − ω4

R

=
ω2
0√

ω4
0 − (ω4

0 − 4β2ω2
0 + 4β4)

=
ω2
0

2β
√
ω2
0 − β2

=
ω2
0

2βω1

(3.32)
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Now, in the limit β � ω0, when ω1 ≈ ω0 (to lowest order in β/ω0), this is approximately

ω0

2β
(3.33)

which is, in the same limit, equal to something called the quality factor Q. While everyone
agrees on the definition of Q in this limit, there seems to be some difference in conventions
as to what happens when β is comparible to ω0 and Q is thus small. The book chooses the
definition

Q =
ωR
2β

(3.34)

which has the advantage that Q → 0 when the damping becomes so small that there is no
resonance.

4 Linear Superposition and Fourier Methods

We’ve solved the problem of a forced damped harmonic oscillator where the driving force is
a sinusoid of a fixed frequency. You might worry that this is not terribly general, and we’d
have to solve the equation

ẍ+ 2βẋ+ ω2
0x = ω2

0A
in(t) (4.1)

over and over again for different external driving forces. Fortunately, there are two facts
which mean that we can reuse our answer from the sinusoidal case in the presence of a wide
variety of driving forces.

1. Linear superposition. The differential equation (4.1) contains a linear differential op-
erator

L =
d2

dt2
+ 2β

d

dx
+ ω2

0 (4.2)

The linearity means
L(x1(t) + x2(t)) = Lx1(t) + Lx2(t) (4.3)

This is just the principle that we used to allow us to write the general solution of
the inhomogeneous equation (3.4) as a superposition of the general solution to the
inhomogeneous equation (2.5) and any solution to the inhomogeneous equation. That
means that if we break up the driving force Ain(t) into two terms:

ẍ+ 2βẋ+ ω2
0x = ω2

0(Ain
1 (t) + Ain

2 (t)) (4.4)

then the general solution will be a sum of the complementary function xc(t) and steady-
state solutions corresponding to the two components of the driving force:

x(t) = xc(t) + x1(t) + x2(t) (4.5)

where
ẍ1,2 + 2βẋ1,2 + ω2

0x1,2 = ω2
0A

in
1,2(t) (4.6)
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So if the driving force is a sum of sines and cosines, we can write down the solution.
For instance, if

Ain(t) = x0 cosωt+ 4x0 sin 3ωt (4.7)

then the steady-state solution is

xp(t) =
ω2
0x0√

(ω2
0 − ω2)2 + 4β2ω2

cos(ωt− δ1) +
4ω2

0x0√
(ω2

0 − 9ω2)2 + 36β2ω2
sin(3ωt− δ2)

(4.8)
where

δ1 = tan−1
2βω

ω2
0 − ω2

(4.9a)

δ2 = tan−1
6βω

ω2
0 − 36ω2

(4.9b)

(4.9c)

2. By using Fourier series and Fourier transforms, any driving force can be written as an
infinite sum of sines and cosines.

4.1 Periodic Driving Forces (Fourier Series)

Consider first the case where the driving force has some periodicity Ain(t) = Ain(t+T ). Not
every sine or cosine will have this periodicity, just those with angular frequencies

ωn =
2πn

T
(4.10)

The methods of Fourier series (see supplemental exercises) show us that any periodic function
can be written as an infinite series of sines and cosines:

Ain(t) =
ain0
2

+
∞∑
n=0

ainn cosωnt+
∞∑
n=0

binn sinωnt (4.11)

with the coëfficients given by

ainn =
2

T

∫ T/2

−T/2
Ain(t) cosωnt dt (4.12a)

binn =
2

T

∫ T/2

−T/2
Ain(t) sinωnt dt (4.12b)

By superposition, the steady-state solution to (4.1) is thus

xc(t) =
1

2
ain0

∞∑
n=1

ω2
0a

in
n√

(ω2
0 − ω2

n)2 + 4β2ω2
n

cos(ωnt− δn)

+
∞∑
n=1

boutn

ω2
0b

in
n√

(ω2
0 − ω2

n)2 + 4β2ω2
n

sin(ωnt− δn)

(4.13)
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where

δn = tan−1
2βωn
ω2
0 − ω2

n

(4.14)

Note that

• We have used the zero-frequency behavior to write δ0 = 0 and aout0 = ain0 ; in fact this
means the constant term just effectively shifts the equilibrium position.

• To write (4.13) as a traditional Fourier series, we need to use the angle difference
formulas to write e.g.,

cos(ωnt− δn) = cos δn cosωnt+ sin δn sinωnt (4.15)

and then reorganize the sums to give

xc(t) =
aout0

2
+
∞∑
n=0

aoutn cosωnt+
∞∑
n=0

boutn sinωnt (4.16)

Excercise: work out the general formula for aout and bout.
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A Appendix: Correspondence to Class Lectures

Date Sections Pages
2002 October 16 1 1–3
2002 October 18 1 3–3
2002 October 21 1.1–2.1.1 4–7
2002 October 23 2.1.1–2.3 7–9
2002 October 25 Review
2002 October 28 Midterm
2002 October 30 Midterm
2002 November 4 Midterm Recap
2002 November 6 3–3.2 9–11
2002 November 8 3.2–3.2.2 11–13
2002 November 11 3.3–4 13–15
2002 November 13 4.1 15–16
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