
Mathematical Preliminaries
(Marion & Thornton Chapter One)

Physics A300∗

Fall 2002

Much of this will be familiar from past physics & math courses, but it’s useful to review
it & to formulate things in ways appropriate to a careful treatment of physics. All along, we
will have two arenas in mind in which these quantities live: an abstract mathematical arena,
where properties can be obtained by calculation & manipulation, and a geometrical/physical
one, where properties are related to a picture of the real world.

Let’s start with a few basic geometric objects:

1 Scalars

A scalar is just a single number, with an intrinsic value which can be defined without reference
to any coördinate system or vector basis. (As an aside, this “number” may also have physical
units attached to it, so it may be 68.1 kilograms or equivalently 6.81 × 104 grams, or may
be a dimensionless number like 2π.) A physical example would be the mass of a particular
particle or the length of a given curve through space.

2 Scalar Fields

A scalar field consists of a scalar value associated with each point in space. (Physical
examples would be the temperature inside a room or the density of a fluid.) The value of
the scalar field at a given point in space will again be an invariant, but since a coördinate
system is needed to label each point for quantitative calculations, the actual function of
those coördinate values will change. Mathematically, if the scalar field expressed in terms of
the old coördinates is written as ϕ(x, y, z), there will be a new functional form ϕ′(x′, y′, z′)
used to describe the field as a function of the new coördinates.

This is most clearly illustrated by an example. Suppose the scalar field is such that in a
particular Cartesian coördinate system {x, y, z}, it can be written as ϕ(x, y, z) = axy where
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a is some constant. And suppose we choose new coördinates rotated 45◦ so that

x′ =
1√
2

(x+ y) (1a)

y′ =
1√
2

(−x+ y) (1b)

and thus

x =
1√
2

(x′ − y′) (2a)

y =
1√
2

(x′ + y′) . (2b)

Then by substitution ϕ(x, y, z) = axy = 1
2
a(x′2 − y′2) = ϕ′(x′, y′, z′).

3 Vectors

Lots of different definitions out there; focus on two:

• Mathematical: ordered set of numbers

• Physical: magnitude & direction

3.1 Mathematical Picture

Mathematically, we can think about 3-dimensional vectors as column vectors, i.e., 3 × 1
matrices. We know we can add & subtract these objects, and multiply them by a constant,
e.g.:

A + B =

A1

A2

A3

+

B1

B2

B3

 =

A1 +B1

A2 +B2

A3 +B3

 (3)

or

aA = a

A1

A2

A3

 =

aA1

aA2

aA3

 (4)

Matrix algebra also lets us associate a row vector (1× 3 matrix) AT = (A1, A2, A3) with the
column vector A. We can then use matrix multiplication to define, for any two vectors A
and B, the “inner product”

ATB =
(
A1 A2 A3

)B1

B2

B3

 = A1B1 + A2B2 + A3B3 =
3∑
i=1

AiBi (5)

(1× 1 matrix, i.e., a number) and the “outer product”

ABT =

A1

A2

A3

(B1 B2 B3

)
=

A1B1 A1B2 A1B3

A2B1 A2B2 A2B3

A3B1 A3B2 A3B3

 (6)
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(3× 3) i.e.,
(ABT)ij = AiBj (7)

Both the inner and outer product are special cases of matrix multiplication, so they obey
a slew of nice properties usually associated with multiplication, in particular what could be
called bilinearity:

(aA + bB)T(cC + dD) = acATC + bcBTC + adATD + bdBTD (8)

3.1.1 Basis Vectors

This can be further abstracted by introducing the basis

e1 =

1
0
0

 e2 =

0
1
0

 e3 =

0
0
1

 (9)

Then a vector is related to its components by

A =
3∑
i=1

Aiei . (10)

Since the inner products of the basis vectors with each other are

eT
i ej = δij =

{
1 i = j

0 i 6= j
(11)

we can also calculate the components of A as

eT
i A = eT

i

3∑
j=1

Ajej =
3∑
j=1

Ajδij = Ai (12)

3.1.2 Change of Basis

In an abstract sense, there’s nothing all that special about the basis vectors {e1, e2, e3} we’ve
been using. We can replace them with some new set of three linearly independent vectors
{e1, e2, e3}. These vectors, like any vectors, can be expressed in terms of their components
in the old basis:

ek =
3∑
i=1

(
Λ−1

)
ik

ei (13)

where the components are (
Λ−1

)
ik

= eT
i ek . (14)

The somewhat odd choice of notation will become clear in a moment.
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We can resolve any vector in the new basis:

A =
3∑

k=1

Akek (15)

which shows us that

Ai = eT
i A =

3∑
k=1

Ake
T
i ek =

3∑
k=1

(
Λ−1

)
ik
Ak (16)

Or, equivalently

Ak =
3∑
i=1

ΛkiAi (17)

Of course, for this new set of basis vectors to be on equal footing with the original ones,
they need to obey a relation analogous to (11), i.e.,

eT
k
e` =

(
3∑
i=1

(
Λ−1

)
ik

ei

)T( 3∑
j=1

(
Λ−1

)
j`

ej

)
=

3∑
i=1

3∑
j=1

(
Λ−1

)
ik

(
Λ−1

)
j`
δij

=
3∑
i=1

(
Λ−1

)
ik

(
Λ−1

)
i`

= δk`

(18)

which limits the set of transformations we consider to take us between “equivalent” bases.
In matrix notation, the last equality becomes(

Λ−1
)T

Λ−1 = 1 (19)

or
Λ =

(
Λ−1

)T
(20)

which in terms of components means (
Λ−1

)
ik

= Λki (21)

Such a transformation matrix Λ is called an orthogonal matrix. The rotation matrices
described in section 1.4 are an example of orthogonal matrices.

3.2 Geometrical Picture

We can perform the manipulations of matrix algebra to our hearts’ content, but what makes
vectors so interesting and useful for physics is the second idea, that they represent quantities
with a magnitude and direction in three-dimensional space. To emphasize the geometric
significance of this picture we talk about a geometrical vector ~A to which the both the row
vector A and the column vector AT correspond. The key to the correspondence will be the
orthonormal basis vectors ~e1, ~e2, ~e3, which each have a length of 1 and which point in three
perpendicular directions. (This basis also obeys the right-hand rule.)
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Geometrically, we think of the magnitude and direction of ~A as being fundamental,
rather than its components A1, A2, A3 in a particular basis. So, if we need to deal with the
components, we’re free to rotate the trio of basis vectors however we like, to obtain any of
the set of equivalent right-handed orthonormal bases.

Now, in an arbitrary orthonormal basis, the geometrical version of (10) is

~A = A1~e1 + A2~e2 + A3~e3 (22)

But geometrically, this is just the resolution of ~A into its projections along the three basis
vectors.

This leads naturally to familiar geometric constructions: First, that multiplying a vector
~A by a constant a gives a new vector a ~A with the same direction and a length multiplied by
a. Second, that the sum ~A+ ~B of two vectors can be constructed by placing the tail of the
first on the tip of the second.

3.2.1 Scalar Product

Now we’re ready to talk about the geometrical meaning of the inner product. Geometrically,
we call this the “dot product”:

~A · ~B = ATB =
3∑
i=1

AiBi (23)

But now let’s use our freedom to rotate our basis vectors to choose a basis where ~e1 is parallel
to ~A and where ~B lies in the plane spanned by ~e1 and ~e2. Then the vector ~A has magnitude

A =
∣∣∣ ~A∣∣∣ and a direction parallel to ~e1, which means that ~A = A~e1. The inner product is

then
~A · ~B = A~e1 · ~B = AB1 (24)

But now recall that B1 is just the projection of ~B onto the direction ~e1, which is in this choice
of basis parallel to ~A. If the angle between ~A and ~B is θ, the projection of ~B parallel to ~e1

is (defining B =
∣∣∣ ~B∣∣∣ as the magnitude of ~B) B1 = B cos θ and the projection perpendicular

is B2 = B sin θ. This means
~A · ~B =

∣∣∣ ~A∣∣∣ ∣∣∣ ~B∣∣∣ cos θ (25)

but this expression makes no reference to the basis we chose, only to three geometrical

quantities: the magnitudes
∣∣∣ ~A∣∣∣ and

∣∣∣ ~B∣∣∣ of the two vectors and the angle θ between them.

Thus the dot product of two vectors is a geometrical quantity whose value is independent of
the basis used to calculate it, i.e., a scalar, which is why we also call it the “scalar product”.

3.2.2 Tensor Product

The outer product of two vectors produces a 3 × 3 matrix C = ABT. Geometrically, we

represent this as
←→
C = ~A ⊗ ~B.

←→
C is a type of object known as a tensor, which is more

difficult to visualize, and which we will put aside until we consider rigid body motion next
semester.
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3.2.3 Vector Product

So far, nothing we’ve done has been particularly special to three dimensions. The scalar
product (and the tensor product) is fundamentally defined in linear algebra, and our treat-
ment there could just as easily have been done in an arbitrary number N of dimensions.
In contrast, something which can be defined in three dimensions, but which doesn’t have a
simple analog in any other number of dimensions, is an operation, called the “cross product”
which multiplies two vectors ~A and ~B and gives a third vector ~C. The underlying reason
for this is that there are three vectors involved in that operation, and so it has a natural
definition in three-dimensional space.

If we can derive the cross products ~ei×~ej of the basis vectors with themselves, we’ll have
enough information to deduce the cross product of any two vectors. In particular, we’ll want
to work out the components

εijk = ~ei × ~ej · ~ek (26)

for the 33 = 27 different combinations of i, j, and k.

Derivation of the Vector Product (Extra!) Almost all of these values can be filled in
from the geometrical requirement that the answer be the same for any orthonormal right-
handed basis. We only need one definition to start off, and for that we use

~e1 × ~e2 = ~e3 (27)

(Here’s where the fact that we have three basis vectors came in handy; ~e3 is the obvious
thing to put on the right-hand side.) So we’ve now got

ε121 = 0 ε122 = 0 ε123 = 1 (28)

just from the definition.
First, let’s note that we only need to fill in the 32 = 9 elements {ε1jk} and we should be

able to deduce the other 18 elements {ε2jk} and {ε3jk}. This is because we can go from one
right-handed orthonormal basis to another by rotating through an angle of 120◦ about a line
parallel to ~e1 + ~e2 + ~e3. This operation will permute the basis vectors:

~e1 = ~e2 ~e2 = ~e3 ~e3 = ~e1 (29)

Since any right-handed orthonormal basis should be as good as any other, εk`m = εijk which
in this case means we can permute 1, 2, and 3 when they appear as indices in εijk. So this
means, for example, (28) implies

ε232 = 0 ε233 = 0 ε231 = 1 (30)

and similarly, applying the permutation again allows us to deduce {ε3jk} from {ε2jk}.
We next have a look at the product ~e2×~e1 by considering a basis which has been rotated

through 90◦ around ~e3 so that

~e1 = ~e2 ~e2 = −~e1 ~e3 = ~e3 (31)
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Now
~e2 × ~e1 = (−~e1)× ~e2 = −(~e1 × ~e2) = −~e3 = −~e3 (32)

where a crucial step is to assume that the cross product is bilinear. But of course the two
bases are equivalent so

~e2 × ~e1 = −~e3 (33)

and
ε211 = 0 ε212 = 0 ε213 = −1 (34)

(Note that this means the cross product is not commutative, since ~e2 × ~e1 = −~e1 × ~e2.) We
can perform the same permutation as before to obtain

ε133 = 0 ε131 = 0 ε132 = −1 (35)

Finally, we ask what happens when we take the vector product of a unit vector with
itself. By definition

~e1 × ~e1 = ε111~e1 + ε112~e2 + ε113~e3 (36)

This splits into a projection ε111~e1 parallel to ~e1 and a projection ε112~e2+ε113~e3 perpendicular
to ~e1. Consider first the piece perpendicular to ~e1; if we rotate the basis 180◦ about ~e1, we
get

~e1 = ~e1 ~e2 = −~e2 ~e3 = −~e3 (37)

Working in this basis,

~e1 × ~e1 = ~e1 × ~e1 = ε111~e1 + ε112~e2 + ε113~e3 = ε111~e1 − ε112~e2 − ε113~e3 (38)

but comparing this to (36), we can read off

ε112 = −ε112 ε113 = −ε113 (39)

which means
ε112 = 0 = ε113 (40)

leaving only the parallel term
~e1 × ~e1 = ε111~e1 (41)

But now consider a different rotation, 180◦ about ~e3, so that

~e1 = −~e1 ~e2 = −~e2 ~e3 = ~e3 (42)

Now

~e1 × ~e1 = ε111~e1 = ε111(−~e1) = −ε111~e1 = (−~e1)× (−~e1) = ~e1 × ~e1 = ε111~e1 (43)

which means that also ε111 = 0 so ~e1 × ~e1 = 0
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Definition of the Vector Product Putting all of the properties together, we find

ε123 = ε231 = ε312 = 1 (44a)

ε132 = ε213 = ε321 = −1 (44b)

εijk = 0 for all other i, j, k (44c)

This εijk is called the Levi-Civita symbol or the alternating symbol. Many more properties
can be found in the textbook.

Geometrical Interpretation of the Vector Product Now we can associate a geomet-
rical meaning to the cross product ~A× ~B, looking again in the special basis where ~A = A~e1
and ~B = B cos θ~e1 +B sin θ~e2 (where θ is once again the angle between the two vectors, now

measured counter-clockwise from ~A to ~B). The cross products of the unit vectors tell us
that

~A× ~B = AB sin θ~e3 (45)

But geometrically, AB sin θ is the area of the parallelogram spanned by ~A and ~B, while ~e3
is the unit vector perpendicular to the plane in which it lies.

4 Vector Fields

A vector field consists of a vector at every point in space; examples include the gravita-
tional, electric, or magnetic field, or the velocity field of a fluid flow. To resolve the field in
components, we need to have a full set of basis vectors at every point in space.

4.1 Relationship Between Cartesian Coördinate Systems and Or-
thonormal Bases

Given a Cartesian coördinate system, there is a natural orthonormal basis to choose. If the
coördinates are x, y, and z, it’s convenient to call the basis vectors ~ex, ~ey, and ~ez. The vector
~ei “points in the xi direction”, which means in the direction where xi is increasing and the
other two coördinates remain constant. Note that there are other names used for these basis
vectors, such as (x̂, ŷ, ẑ) or (̂ı, ̂, k̂), or even (~ı,~,~k). (The book calls them (i, j,k).)

Now, the most tempting way to formalize this correspondence is to introduce a “position
vector”

~x = x~ex + y~ey + z~ez (46)

(referred to in the book as ~r or actually r). After all, if we rotate our coördinates using a
rotation matrix Rki, the transformation is

xk = Rkixi (47)

which is just the way a vector transforms under a rotation. Unfortunately, (47) is not the
only transformation which takes us from a Cartesian coördinate system to another Cartesian
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coördinate system. We can also translate the origin by a constant distance (X1, X2, and X3,
respectively) in each direction, and get another perfectly good Cartesian coördinate system:

xk = xi −Xi (48)

However, this new coördinate system still has its axes pointed in the same direction, i.e.,

~ex = ~ex (49a)

~ey = ~ey (49b)

~ez = ~ez (49c)

which would mean that, if ~x were a true vector, its components in the new basis would be
the same as in the old one.

The most general transformation from one right-handed Cartesian coördinate system to
another is

xk = Rkixi −Xk (50)

where {Rki} are the components of a constant rotation matrix (orthogonal and with unit
determinant) and {Xk} are three constant lengths. The change in basis under this transfor-
mation is

~ek = Rki~ei (51)

and the transformation of the components of a vector ~A is

Ak = RkiAi (52)

It is often convenient to pretend that there is such a thing as a “position vector ~x”,
and it usually doesn’t get us into trouble, since the difference between the position vectors
describing two points does act like a vector (at least when we confine attention to Cartesian
coördinate systems). Explicitly, if we write

~xPQ = ~xQ − ~xP = (xQ − xP )~ex + (yQ − yP )~ey + (zQ − zP )~ez (53)

then the transformation properties of ~xPQ can be derived from the coordinate transformations
(50):

xPQk = xQk − xP k =
(
RkixQi −Xk

)
− (RkixP i −Xk) = Rki

(
xQi − xP i

)
= RkixPQi (54)

Since differentiation is just a limiting case of subtraction, this means that given a particle
trajectory ~x(t), we can define a velocity vector

~̇x(t) =
d~x

dt
= lim

δt→0

~x(t+ δt)− ~x(t)

δt
(55)

which is a bona fide, honest-to-goodness, full-fledged vector.
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4.2 Non-Cartesian Bases

The orthonormal bases associated with Cartesian coördinates have the advantage that the
basis vectors are the same at all points in space. However, if the geometry of a problem
makes it more natural to use non-Cartesian cördinates such as spherical coördinates (r, θ, φ)
defined by

x = r sin θ cosφ (56a)

y = r sin θ sinφ (56b)

z = r cos θ (56c)

or cylindrical coördinates (ρ, φ, z) defined by

x = ρ cosφ (57a)

y = ρ sinφ (57b)

z = z (57c)

or, in two dimensions, plane polar coördinates (r, φ) defined by

x = r cosφ (58a)

y = r sinφ (58b)

it’s natural to define an orthonormal basis at each point whose basis vectors point in the
directions in which our chosen coördinates are locally increasing. Non-Cartesian coördinate
systems can be studied in all generality, which is not only an elegant process, but also
essential for the study of General Relativity. But within the scope of this course, we’ll take
the same approach as Marion and Thornton and just look at a few special cases.

So for plane polar coördinates, we find geometrically that

~er = cosφ~ex + sinφ~ey (59a)

~eφ = − sinφ~ex + cosφ~ey (59b)

writing this in matrix form (
~er
~eφ

)
=

(
cosφ sinφ
− sinφ cosφ

)(
~ex
~ey

)
(60)

makes it clear that the inverse transformation is(
~ex
~ey

)
=

(
cosφ − sinφ
sinφ cosφ

)(
~er
~eφ

)
(61)

Now, although the vectors ~ex and ~ey are constant, the vectors ~er and ~eφ change from
point to point. Specifically, differentiating (60) tells us(
d~er
d~eφ

)
=

(
− sinφ dφ cosφ dφ
− cosφ dφ − sinφ dφ

)(
~ex
~ey

)
=

(
− sinφ dφ cosφ dφ
− cosφ dφ − sinφ dφ

)(
cosφ − sinφ
sinφ cosφ

)(
~er
~eφ

)
=

(
0 dφ
−dφ 0

)(
~er
~eφ

)
(62)
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or in other words

d~er = ~eφdφ (63a)

d~eφ = −~erdφ (63b)

4.3 Vector Calculus

In addition to an infinitesimal displacement d~x being a vector, derivatives with respect to
coördinates behave in a convenient way thanks to the relation

∂xk
∂xi

= Λki (64)

That means that if we take the derivative of a scalar field ϕ with respect to the coördinate
xi, the chain rule tells us

∂ϕ

∂xi
=

3∑
k=1

∂xk
∂xi

∂ϕ∂xk =
3∑

k=1

Λki

∂ϕ

∂xk
(65)

But since Λ is an orthogonal matrix, Λki = Λ−1
ik

, so

∂ϕ

∂xi
=

3∑
k=1

Λ−1
ik
∂ϕ∂xk (66)

or
∂ϕ

∂xk
=

3∑
i=1

Λki∂ϕ∂xi (67)

but this is just the transformation law for a vector. This vector is called the gradient of ϕ

~∇ϕ =
3∑
i=1

∂ϕ

∂xi
~ei (68)

Note that this demonstration only works in Cartesian coördinate systems, and the gradient
is only defined by (68) in Cartesian coördinates. Most of a course could be spent on how
to do vector calculus in an arbitrary coördinate system, but for our purposes, the definition
of the gradient can be extended to non-Cartesian coördinate systems by using (68) as the
starting point and transforming into the non-Cartesian system. The specific forms in the
most common coördinate systems are given in Appendix F of Marion & Thornton.

There are two other interesting vector derivatives, which basically amount to taking the
dot and cross products of the gradient operator with a vector field ~A. They are the curl,
defined by

~∇× ~A =
3∑
i=1

3∑
j=1

3∑
k=1

εijk
∂Aj
∂xi

~ek (69)
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and the divergence, defined by

~∇ · ~A =
3∑
i=1

∂Ai
∂xi

(70)

the demonstrations that these are a vector and a scalar, respectively, rely on the fact that
the transformation matrix elements Λki are constants.

4.3.1 Vector Integrals

We can perform single, double, or triple integrals involving vectors. They are summarized
in this table:

#Dim Type of Integral Form

1 line integral
∫
C

~A · d~̀=
∫ sQ
sP

(
~A · d~̀

ds

)
ds

2 surface integral
s

S

~A · d2~a =
s

S

( ~A · ~n) d2a

3 volume integral
t

V

ϕd3v

Integration by Parts Recall the second fundamental theorem of calculus, which says that
if you integrate the derivative of a function, the result is given by the difference between the
values of the function at the boundaries:∫ b

a

F ′(x) dx = F (b)− F (a) (71)

Each of the integrals in the table above satisfies an identity which can ultimately be derived
from this. In each case, one replaces the n-dimensional integral of a vector derivative with
an n − 1-dimensional integral, without the derivative, over the boundary. Basically the
derivative allows you to get rid of one of the integrals.

Explicitly, consider the line integral of a gradient:∫
C

~∇ϕ · d~̀ (72)

where C is a curve with endpoints P and Q. We can parametrize this curve with functions
x(s), y(s), z(s), or abusing the vector notation slightly, ~x(s). The parameter ranges from sP
to sQ. The line integral can then be written as∫

C

~∇ϕ · d~̀=

∫ sQ

sP

(
(~∇ϕ) · d~x

ds

)
ds =

∫ sQ

sP

3∑
i=1

∂ϕ

∂xi

dxi
ds
ds =

∫ sQ

sP

dϕ(~x(s))

ds
ds

= ϕ(~x(sQ))− ϕ(~x(sP )) = ϕ(Q)− ϕ(P )

(73)

Where we have used the chain rule as well as the second fundamental theorem of calculus.
The pair of points Q and P can be thought of as the zero-dimensional boundary of the

one-dimensional curve C. The standard notation is to use ∂ to indicate the n−1 dimensional
boundary of an n-dimensional object. So we refer to these two points as ∂C.
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Note that no matter what curve we use, as it begins at P and ends at Q (i.e., has
boundary ∂C), if we integrate a gradient along it, we get the same answer.

The higher-dimensional versions of this have somewhat more involved derivations, but
all come down to the second fundamental theorem of calculus, and can all be summarized
as “the integral of the appropriate vector derivative over an n-dimensional region is equal
to an integral, without the derivative, over the n− 1-dimensional boundary”. The identities
are summarized below:

#Dim Name Identity

1→ 0
∫
C

(~∇ϕ) · d~̀= ϕ(Q)− ϕ(P )

2→ 1 Stokes’s Theorem
s

S

(~∇× ~A) · d2~a =
∮
∂S

~A · d~̀)

3→ 2 Gauss’s Theorem (or Divergence Theorem)
t

V

~∇ · ~Ad3v =
v

∂V

~A · d2~a

Note that in the case of Stokes’s theorem, as with the integral of a gradient, it doesn’t
matter over which surface you integrate a curl, as long as it has the same boundary.

Also, note that the boundary of an n-dimensional region is in each case a closed n −
1-dimensional region, i.e., it does not have a (n − 2-dimensional) boundary of its own.
Specifically, consider the boundary ∂V of a volume V . It is a closed surface, and has no
boundary ∂(∂V ). The same thing is true of the curve ∂S which forms the boundary of the
surface S. It has no boundary ∂(∂S). The deeper underlying identity is sometimes stated
as “the boundary of a boundary is zero”: ∂2 = 0.

A Appendix: Correspondence to class lectures

Date Sections Pages
2002 August 26 1–2 1–2
2002 August 28 3–3.1.2 2–3
2002 August 30 3.1.2–3.1.2 3–4
2002 September 4 3.2–3.2.3 4–8
2002 September 6 4–4.1 8–9
2002 September 9 Review
2002 September 11 Review
2002 September 13 4.1–4.2 9–10
2002 September 16 4.2–4.2 10–11
2002 September 18 4.3–4.3.1 11–12
2002 September 20 4.3.1–4.3.1 12–13
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