Calibrating EOB waveforms with numerical simulations

Lawrence E. Kidder Cornell University

Buonanno, Pan, Pfeiffer, Scheel, Buchaman and Kidder (arXiv:0902.0790)

12th Eastern Gravity Meeting 15 June 2009, RIT

- Generation of Numerical Waveforms
- Generation of EOB Waveforms
- Comparing Numerical and EOB Waveforms

Introduction and Motivation

- Gravitational wave detectors need accurate theoretical waveforms to use as templates in order to detect and extract information using matched filtering.
- Post-Newtonian (PN) waveforms are not accurate during last several orbits and merger.
- Numerical waveforms are too expensive to generate necessary templates.
- Effective one-body (EOB) formalism extends PN waveforms through merger and ringdown, but must be calibrated with numerical simulations.

Spectral Einstein Code

[Kidder, Pfeiffer, Scheel]

- Generalized harmonic formulation of Einstein's equations
 - 10 coupled first-order wave equations (50 variables)
 - Constraint damping (Lindblom et al 2006)
- Dual frame method with dynamic tracking of the black holes
 - Time-dependent rotation and scaling (Scheel et al 2006)
 - Use control theory to adjust mapping to track holes
- Boundary conditions
 - Excision boundary is pure outflow (no BC needed)
 - Constraint preserving (Lindblom et al 2006)
 - No incoming physical radiation
 - Minimize reflections of gauge modes (Rinne et al 2007)
- Multidomain pseudospectral method
 - Exponential convergence for smooth solutions
 - Highly efficient for high accuracy

Equal-mass non-spinning binary black hole

- 16.5 orbit inspiral-meger-ringdown (Boyle et al 2007; Scheel et al 2009)
- Non-spinning $S_i/m_i^2 < 10^{-5}$
- Low eccentricity $e \approx 6 \times 10^{-5}$

Effective-one-body formalism

[Buonanno, Damour; PRD 59, 084006 (1999)] [Damour; arXiv:0802.4047]

- Based on re-summed PN results
- "Flexibility" parameters to describe unknown physics
- Conservative Hamiltonian one-body dynamics
 - $a_5(\nu)$ pseudo-4PN correction to radial potential
- Radiation-reaction force from flux
 - A₈ pseudo-4PN correction to energy flux
 - $V_{pole}(\nu)$ resummation parameter
 - a_{RR}^r and a_{RR}^{Φ} non-quasi-circular terms
- Description of inspiral waveform
 - Resummed PN modes of h_{ℓ,m} (Damour,lyer,Nagar,2008)
 - Add non-quasi-circular corrections (4 parameters)
- Ringdown waveform
 - quasi-normal modes based on final mass and spin from NR
 - attach modes to inspiral-plunge waveform
 - $t_{match}^{\ell,m}$ and $\delta t_{match}^{\ell,m}(\nu)$

EOB calibration: inspiral

- Phase evolution depends only on inspiral dyanamics
- Two parameters suffice: $a_5 = 6.344$, $v_{pole} = 0.85$

EOB calibration: Plunge-merger

- choice of resummation matters
- fix four NQC parameters by
 - max of h_{EOB} at same t as max of Ω_{EOB}
 - max of h_{EOB} is equal to max of h_{NR}
 - least square fit of remaining two parameters

Conclusions and Future Work

Conclusions

- EOB can be calibrated to match NR
- waveforms are consistent for higher-order modes
- waveforms are consistent for 2:1 and 3:1 inspirals if $a_5(\nu)$.
- Similar conclusions reached by [Damour and Nagar, arXiv:0902.0136]

Future Work

- longer BBHs inspiral+merger+ringdown for mass ratios 2:1, 3:1, 4:1, 6:1
- comparison with BBHs with aligned spins
- improve EOB formalism for spinning binaries
- look at tidal effects in EOB by comparing with NS-BH