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Loop quantum cosmology

Loop quantum cosmology takes the ideas of loop quantum gravity
and applies them to simple, symmetry-reduced models like FRW
cosmologies.
One of the more important
results was to show that the big
bang singularity is resolved due
to quantum geometry effects in
homogeneous and isotropic
cosmologies. In addition,
numerical simulations have
shown that the singularity is
replaced by a quantum bounce. [Ashtekar, Pawlowski, Singh]

The obvious next step is to study models which allow anisotropies;
Bianchi I cosmologies are the simplest such models.
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The BKL conjecture

Quantum gravity effects are expected to be small at normal energy
scales but should become large where general relativity fails, i.e.
where singularities appear in the classical theory. For this reason, it is
important to study the effects of quantum gravity near singularities.

In the 1970’s, Belinskii, Khalatnikov and Lifshitz suggested that as a
generic space-like singularity is approached, neighbouring points
decouple from one another and each point can be described for long
periods of time by the Bianchi I model. There has recently been a
wealth of numerical results supporting their conjecture. [Andersson,

Berger, Garfinkle, Moncrief, Rendall, ...]

Because of this, it is particularly interesting to study the loop
quantum cosmology of Bianchi I models.
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The Bianchi I space-time

The elementary variables in loop gravity are the densitized triad
E a

i =
√

qea
i and the connection Ai

a = Γi
a + γK i

a.

Due to the symmetries of Bianchi I, they can each be parametrized
by three variables:

E a
i = pi

(
∂

∂x i

)a

and Ai
a = c i(dx i)a.

These are related to the variables in the metric

ds2 = −N2dt2 + a2
1dx2

1 + a2
2dx2

2 + a2
3dx2

3 ,

as follows:
p1 ∝ a2a3 and c1 ∝ ȧ1/N .
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Classical Hamiltonian constraint

We will take the matter field to be a massless scalar field for two
reasons: it is simple and the field φ can serve as a clock. Taking the
symmetries of Bianchi I space-times into account, the Hamiltonian
constraint is given by

CH =

∫
V

[
E a

i E b
j

16πGγ2
εij kFab

k +
p2
φ

2

]
,

and, in terms of pi and ci , it is

CH =

∫
V

[
− 1

8πGγ2
(p1p2c1c2 + p1p3c1c3 + p2p3c2c3) +

p2
φ

2

]
.

Finally, the only nonzero Poisson bracket is

{ci , pj} = 8πGγδij .
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Quantization procedure

In order to obtain the quantum theory, we must promote the
variables to operators. This is easily done for pi ,

p̂1|p1, p2, p3〉 = p1|p1, p2, p3〉,

but it is more difficult for ci as there is no operator corresponding to
the connection in LQG. However, since there do exist operators
corresponding to holonomies, it is possible to obtain an operator for
Fab

k which is motivated by the classical relationship

Fab
k = −2 lim

Ar�→0
Tr

(
h�ij
− 1

Ar�
τ k

)
(dx i)a (dx j)b.

However, it is impossible to take the limit of the area going to zero in
the quantum theory as the area eigenvalues are discrete. Instead we
will consider the case where Ar� is the smallest area eigenvalue ∆`2

Pl

in LQC.
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The F̂ab
k operator

We find that

F̂ab
k =

∑
i , j

εij
k sin µ̄ici sin µ̄jcj

µ̄i µ̄j
(dx i)a(dx j)b,

where µ̄1 =
√

p1∆`2
Pl/p2p3. We then expand each sin µ̄ici term into

complex exponentials and we need to determine how e i µ̄ici acts on a
state.

To do this, we introduce the variables λi ∝
√

pi and then we find

e i µ̄ici = exp

[
− 1

λjλk

∂

∂λi

]
.

This shows that the exponentials shift the wavefunctions:

e i µ̄1c1Ψ(λ1, λ2, λ3) = Ψ(λ1 − 1
λ2λ3

, λ2, λ3).

We will also introduce v ∝ λ1λ2λ3.
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Quantum Hamiltonian constraint
Combining all of the terms, we obtain a difference equation from the
Hamiltonian constraint operator describing the quantum dynamics:

∂2
φΨ(λ1, λ2, v ;φ) =

πG

8

√
v
h
(v + 2)

√
v + 4 F+

4 (λ1, λ2, v ;φ)− (v + 2)
√

v F+
0 (λ1, λ2, v ;φ)

− (v − 2)
√

v F−0 (λ1, λ2, v ;φ) + (v − 2)
√

v − 4 F−4 (λ1, λ2, v ;φ)
i
;

where
F±4 (λ1, λ2, v ;φ) = Ψ

„
v ± 4

v ± 2
· λ1,

v ± 2

v
· λ2, v ± 4;φ

«
+ Ψ

„
v ± 4

v ± 2
· λ1, λ2, v ± 4;φ

«
+ Ψ

„
v ± 2

v
· λ1,

v ± 4

v ± 2
· λ2, v ± 4;φ

«
+ Ψ

„
v ± 2

v
· λ1, λ2, v ± 4;φ

«
+ Ψ

„
λ1,

v ± 2

v
· λ2, v ± 4;φ

«
+ Ψ

„
λ1,

v ± 4

v ± 2
· λ2, v ± 4;φ

«
;

F±0 (λ1, λ2, v ;φ) = Ψ

„
v ± 2

v
· λ1,

v

v ± 2
· λ2, v ;φ

«
+ Ψ

„
v ± 2

v
· λ1, λ2, v ;φ

«
+ Ψ

„
v

v ± 2
· λ1,

v ± 2

u
· λ2, v ;φ

«
+ Ψ

„
v

v ± 2
· λ1, λ2, v ;φ

«
+ Ψ

„
λ1,

v

v ± 2
· λ2, v ;φ

«
+ Ψ

„
λ1,

v ± 2

v
· λ2, v ;φ

«
.
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The singularity is resolved

A singular state is one which corresponds to a singular classical
geometry. For Bianchi I cosmologies, this is the case iff v = 0. It can
be shown that all singular states are annihilated by the gravitational
part of the Hamiltonian constraint, that is

∂2
φΨsing = 0.

This shows that the gravitational degrees of freedom in the singular
states do not evolve.

One can also show that a nonsingular state can never become a
singular state under the action of the Hamiltonian constraint. In
particular, if one starts with a wavefunction which is a superposition
of only nonsingular states, the wavefunction will never have any
support on singular states.

It is in this sense that the singularity is resolved.
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Symmetry reduction

In LQC, symmetry reduced
models are studied and progress
can be made as these models
are relatively simple. But can
we symmetry reduce first and
then quantize?

[Engle]

The projection Ψ(v) =
∑

λ1,λ2
Ψ(λ1, λ2, v) produces a wavefunction

which depends only on the volume, not on any anisotropies. It can be
shown that the dynamics for this wavefunction are identical to the
dynamics for the flat isotropic FRW model in LQC.

⇒ This is an indication that it is ok to first symmetry reduce and to
then quantize.
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Conclusions

Bianchi I space-times are particularly interesting to study in the
context of quantum gravity due to the BKL conjecture

The Hamiltonian constraint is well defined

The singularity is resolved

There are indications that quantizing symmetry reduced models
is a viable approach

Numerical studies are needed to fully understand the dynamics
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