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@ Sketchy review of Horava-Lifshitz gravity.
@ Introduction of a scalar field and related problems.
@ Cosmology.
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Example: Lifshitz scalar (1941):

1 . 1
SLifshitz = 3 / dtdx {¢2 - 4(A¢)2]

It defines an anisotropic scaling between time and space:

t — bt, X — bX, M =—z [K]=-1, [¢]=

@ The critical exponent z determines the dimension D at
which the field propagator becomes logarithmic, critical
behaviour of correlation functions near a phase transition.
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The idea

Horava, arXiv:0812.4287, arXiv:0901.3775

@ The meeting point of phase boundaries in multicritical
phenomena is called Lifshitz point. Examples:
metamagnets, liquid cristals and Ising models. When
D = z, the system is at (quantum) criticality.

@ Dispersion relation w? ~ |k|? + a|k|*, improves
short-distance behaviour. Theory power-counting
renormalizable if z > D.
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Compact notation
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Friedmann equation:

Possibility of a bounce at

_clA| n 3cK - B?
P+~ 8nG 87Ga2 aZc?K
Proposed in arXiv:0904.0829, later considered by
Brandenberger and others.
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Scale-invariant tensor spectrum.
Perturbed KG equation for a test scalar field ux = adoy:
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Corley—Jacobson dispersion relation as in trans-Planckian
cosmology, strongly scale-dependent scalar spectrum!
= Abandoning detailed balance, signs get fixed.
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W = % /w3(I‘) + /d3x\/§ [uR—i— sogijchl/zR,-]- —2L(9)

L) = uhwt g (536872 + 52606 — jmd?)

4D action very complicated but its properties can be inferred by
looking only at a few terms.
UV marginal kinetic terms:

2 s2
<0¢2 )huA3 i [ 23 s3k2 (2N — 1)] SOA36¢

UV stability if

2
|¢| > m, S% > ZS%KZ(ZA — 1)
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Scalar field effective potential
A 2 40w\
V(g) x ¢* —8 W+] ¢ + (W>
m ) m

Double-well potential, positive cosmological constant.
Problems:

@ V(¢min) < 0, AdS vacuum not lifted.
e Effective speed of light ¢>(¢) > 0 only near local maximum.
@ Total action defines a peculiar scalar-tensor theory:

S= /dtd3x\/§N {2 Lk + [P ()" + (0, QIR+ ... }
At the IR point one may define the conformal

transformation £(9;Q2, 2)Q2 + ¢*(¢) = const but only on
inhomogeneous backgrounds.



@ All the above arguments stress the possibility of severe
fine tunings in the model.



@ All the above arguments stress the possibility of severe
fine tunings in the model.

@ Detailed balance should be abandoned. This is clear only
in the theory with matter.
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Two future directions

@ Lorentz violation: Dispersion relation w? ~ |k|* + a/k|%,
Lorentz-violating effect O[(E/Ep)®]. Tree-level argument,
when the propagator gets loop corrections these might
produce 0(10~2) effects (or fine tuning of counterterms)!
[Collins et al. 2004, 2006]

Fractal structure: Spectral dimension flows from 1 + D in
the infrared to 1 + D/z = 2 in the ultraviolet, like CDT, QEG
and spinfoams. Newton potential G(|x|) ~ [x|~! at large
scales, G(|x|) ~ |x|*~? in general, typical of fractal
manifolds. Since integrals on net fractals can be
approximated by fractional integrals, it is natural to consider
fractional integrals over a space with fractional dimension.




