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I Introduction

Neutron star mergers are predicted to be

* Promising source for short-hard gamma-ray bursts
(e.g., Eichler et al. 1989)

* Site for r-process nucleosynthesis (rapid neutron capture
nucleosynthesis) (e.g., Schramm & Lattimer 1974)

* Source for Kilonovae/macronovae (e.g., Li & Paczynskii, 1998)

 Invaluable site for studying nuclear equation of state
through GW detection (e.g., Lai et al. *93, Hinderler, ‘08,.....)

« GW170817 (15t NS-NS) has shown all these aspects
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Variety of NS-NS merger process

Likely minority but could occur Typical Cases (galactic binary pulsars):
(GW190425) m=2.5—28M,,, (e.g., GW170817)
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Universality
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Solar-abundance pattern
<" of r-process elements

.

The abundance patterns
agree with each other
for Z>~55 irrespective
of the observed stars:

synthesize heavy
elements with a pattern
similar to the solar patter

But, note the fluctuation
around the light elements

Can NS merger reproduce this?



Variety of NS-NS merger process

Likely minority but could occur Typical Cases (galactic binary pulsars):
(GW190425) m=2.5—28M,,, (e.g., GW170817)
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1.

Roles of merger simulations in NR

To provide information to predict signals (EM, GW,
CR, v) associated with mergers for the future events

To explore nucleosynthesis: e.g, whether the
universality 1s reproduced & what are observable
lines for heavy elements? (talk by Hotokezaka)

To prepare a setup for the post-process simulations;
e.g., long-term evolution of ejecta associated with
kilonova & its afterglow, jet simulations, etc.



Time line after the merger: 70 be studied

Merger -> compact obj + disk IY-I‘ay burst? (< 2s)
d @ ¢
LSRN
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<€ > Time after merger

Dynamical ejection
by shock heating/tidal effect

(proceeds in < 10 ms) Key: Angular momentum transport

<€ >
MHD/viscosity-driven post-merger ejection

(in MHD/viscous timescale of remnant disk ~ 15s)

» Key: Weak interaction which determines the property of ejecta:
Important for nucleosynthesis & kilonovae (macronovae)
» Electron fraction, Y,(=n,/(n,+n,)), is key quantity for r-proc.



A milestone goal of NS merger simulations

* Important timescales:

1. Dynamical mass ejection timescale ~ 10 ms
2. Post-merger mass e¢jection timescale ~ O(1) s
3. Short gamma-ray bursts: typically 1~2 s

= We need to evolve the post-merger system at least
for ~10 sec

» Input physics is also important
 MHDiscous effects are the key to PM evolution
* Weak processes are the key to nucleosynthesis

-> Seconds-long GR+rad+MHD simulation with
weak physics input (e.g., neutrino transfer) is needed



Two ways

1. Merger (<~100 ms) + post-merger simulations
separately (e.g., talk by Francois)

2. Seconds-long self-consistent simulation

v Nucleosynthesis, kilonova & its afterglow, GRB jets
are analyzed as a post-process



II Merger & post-merger separately

* We have been working on this for the last five years:
Popular way currently

* A solid way to specifically explore two mass ejection
mechanisms



A Dynamical mass ejection from NS-NS
(ejection within ~ 10 ms after the merger)

* Many numerical-relativity simulations have been done
since 2013 - Well understood besides quantitative
details

€ What we have learned are

¢ Mass=10'4~10'2 Msun (Hotokezaka, Sekiguchi, Foucart, Radice....,
now it is routine work): For low total mass (MNS formation),

it is <~10-3 M, but could be higher for HMNS case

 KElectron fraction=0.05~0.4

- suitable for r-process nucleosynthesis of heavy
elements (Wanajo, Sekiguchi, Goriely, Foucart, Roberts, and others)

* Average velocity=0.15~0.25c, but could be up to
~0.9c (OI’ mor 6) (Hotokezaka+ ‘13, many follow-ups, Radice.....)



B Post-merger mass ejection: more complicated

» Neutron star is magnetized = Remnants are magnetized

* The magnetic field is amplified by MHD instabilities
(Kelvin-Helmholtz instability, MRI, convection, etc)

1. Turbulence & effective viscosity are excited
(Fernandez & Metzger+ ‘13, Just et al. ‘15, ‘21, Fujibayashi+ ‘18, 20)

11. Purely MHD eftects (e.g., Christie+ ‘19, Just+ ‘21, Shibata+ ‘21)
-> Post-merger mass ejection from disk/torus
v Ejecta mass depends on the remnant (BH or NS)
2 M. ~0.05-0.1 M, for long-lived NS formation,
while it is lower, ~0.01 M., for BH formation
* Weak interaction physics (e.g., neutrino reaction) is

key for determining electron fraction (Y,) (e.g., Metzger &
Fernandez ‘14, Just+ ‘15, ‘21, Fujibayashi+ 18, ’20, Miller ‘19)




Basic evolution process of disks by neutrino
cooling and (effective) viscous effects
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No viscous mass ejection; Viscous heating is fully used

Viscous angular momentum for matter expansion 2>

transport = Disk expansion Onset of viscous mass ejection

(but no mass ejection)

Viscous angular momentum transport timescale ~ sec
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Viscous hydro simulation in full GR:
3 solar mass BH + 0.1 solar mass disk (a=0.05)
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How Y, of disks/ejecta is determined?

* [B-equilibrium (reaction timescale < disk evolution one)
p+v,on+et & n+v,op+te”
— Y, is determined by p, + pe = uy +\,bl\(
* In typical situations, neutrino cTaptureg decouple first,
but still electron & positron capture processes

proceed because of high temperature > MeV
p+e ->n+v, & n+et ->p+71,
* For T,,,,<~3MeV, the weak interaction decouples and
Y, 1s determined (Fujibayashi+ 20, Just+ 21)
v Electron degeneracy is weakened for decreased density,

1.e., 1, decreases with time
-> At mass ¢jection, moderately neutron rich, ¥ ,~0. 3

> Heavy r-elements production is suppressed




Y, distribution: Two components
Results from 3D merger + 2D post merger simulation

Low Y. (neutron-rich) ejecta by dynamical ejection
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Mass ratios by dynamical and post-merger ejecta
depend significantly on the lifetime of remnant NS



Broadly speaking there are four patterns
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Nucleosynthesis for MNS vs BH formation
See Fujibayashi et al. 2022; arXiv: 2205.05557

Circles: solar abundance
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A fair agreement with the solar abundance
for the case that HMNS is short-hved

Y (A)/Y (5¥Eu)

10

101

1071

1072 ¢

1073

10°

109 ¢

SFH0135 135
SEFHo130-140
SFHo125-145
SFHo0120-150
SFHo125-155 ]
solar r-residual 1

100

150

7200




MHD effect does not significantly change the
abundance pattern for long hved MNS formatlon case
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Prediction

* Only when the remnants of NS-NS mergers collapse to
a BH 1n a short timescale (~10—100ms) after the
merger, the universality can be reproduced

* Suppose that the NS-NS merger 1s the main site for the

r-process nucleosynthesis. Then,
long-lived MNS formation should be a minority

—> Short-GRBs from a remnant magnetar should be rare;
consistent with the absence of radio sources (talk of KH)

In other words,

* In case many long-lived MNS formations are observed
in the near future, the NS-NS merger scenario of the 7-
process nucleosynthesis may be excluded.

See Fujibayashi et al. 2022; arXiv: 2205.05557



II1 Seconds-long BH-NS merger simulation
K. Hayashi et al. arXiv: 2111.04621; PRD 1n press

* With the current computational resources, self-
consistent simulations are feasible at least for BH-
NS binaries because the length scale 1s larger than
the NS-NS case:

At < Ax o« Mgy (< ~10M)

v

Focusing only on the case that
NS is tidally disrupted



BH-NS merger for 2 seconds: GR + v—rad + MHD

NS with strong dipole field initially K. Hayashi et al. arXiv: 2111.04621
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Ax=400m; Fix mesh refinement with ~400*400%*200 grid * 9 levels



Electromagnetic energy, mass €jection, neutrinos

_Electromagnetic energy
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Electron fraction, Y,: two components
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Y (A)/Y(151)

Nucleosynthesm Prelzmmary by S. WanaJO
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3D view: By Kota Hayashi

NEW: Absence of equatorial-plane symmetry

Time: 0.01 ms

I
n
o
V bHb, sign(B?) [10'2G]

l -1.0e+02

\/b"b, [10%2G]

Rest-mass density + magnetic field lines Magnetic-field strength




IV Issues

» Next step: Perform seconds-long simulations for binary
neutron stars: Kiuchi 1s working on this now

* Improve weak interaction

v’ Better neutrino radiation transfer (never-ending issue)
v Neutrino oscillation (only qualitative study possible)
* Improve angular momentum transport

v MHD with high resolution (never-ending issue)

* Dynamo 1n remnant neutron stars (long-term simulation
1s needed; not yet seriously attacked)

v How global magnetic fields are developed in the
presence of remnant neutron stars?



Electron fraction in resistive MHD+ dynamo terms
107

" Weakly depends on {he dynamo paramelers
- and results are similar fo viscous hydro case
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