

James Healy

Rochester Institute of Technology

Numerical Relativity Community Call August 2, 2021

RIT Group

- Carlos Lousto, Yosef Zlochower, Jim Healy
- Frequent Collaborator: Hiroyuki Nakano
- Recent PhDs: Nicole Rosato and Ian Ruchlin
- Manuela Campanelli and TCAN collaboration
 - compact-binaries.org

LazEv

- One of the first successful evolutions of BBHs in 2005
- ETK backbone (Cactus/Carpet)
- BSSNOK/CCZ4 Formalisms
- Internal thorns for evolution (LazEv), initial data (HiSpID) and analysis
- Very robust:
 - Black-hole binaries (BHBs)
 - 3 black-hole systems
 - 2 orbits at r=100m
 - Long-term simulations of >20,000m
 - RIT Catalog of Waveforms

RIT Catalog

- https://ccrgpages.rit.edu/~RITCatalog
- 777 quasicircular waveforms
- Applications
 - Analytic models of final state parameters
 - Correlations between final state parameters
 - Parameter estimation of LIGO-VIRGO O1/O2 runs

Catalog Breakdown

- Nonspinning: 13 simulations \rightarrow q=1 to 1/15
 - push to lower mass ratios (q=1/128)
- Aligned Spins: 464 simulations
 - Lowest mass ratio with spin currently 1/7
 - push to lower mass ratios (q=1/128)
 - Highest spins of 0.95 for q=1 to $\frac{1}{2}$
 - push to lower mass ratios (q=1/7 currently) with 0.95 spins
- Precessing Spins: 300 simulations
- All simulations have e~0
 - add eccentric waveforms

Next Catalog: Eccentric Waveforms

* With or without spins, currently down to q=1/32.

Next Catalog: Small Mass Ratios

- * PRD 102, 104018 (2020)
- * Nonspinning simulations down to q = 1/128
- * Zeno's dichotomy approach

SMR grid construction

- Start with the q=1/15 case and show convergence
- Halving the mass-ratio adds an additional grid around small BH
- Large BH grid stays the same (m2~1 since m=m1+m2=1)
- Resolutions for q=1/128: m/4096

Analytic fits

Limitations

- Temporally expensive since **dt = cfl*dh**
 - q=1/128 ran for 7 months on 8 frontera nodes
 - Need 3 resolutions for convergence study
- Solutions?
 - Better code scaling
 - Different implementations of MPI?
 - Long term: CarpetX AMR?
 - Gauge choices

Gauge Choice

$$\partial_0 \alpha = (\partial_t - \beta^i \partial_i) \alpha = -2\alpha K,$$

 $\partial_t \beta^a = \frac{3}{4} \tilde{\Gamma}^a - \eta(x^k, t) \beta^a$

- PRD 103, 104068 (2021)
- Initial Lapse/Shift profile
- Shift Evolution parameter, η

Initial Gauge

Spatially dependent η

• *m*η=2

•
$$m\eta_{\psi} = \mathcal{A} + \mathcal{B} \frac{\sqrt{|\vec{\nabla}_r \psi_0|^2}}{(1 - \psi_0^a)^b}$$

- q=1/7 nonspinning
- Better mass retention with G

- q=1/128 nonspinning
- Reduced noise with G

Ringdown q=1/32 nonspinning

• Higher effective resolution with G

Conclusion

- LazEv is a very robust code used to run a myriad of vacuum black hole simulations
- We are pushing the code to unexplored limits with great results
- Gauge choices can help reduce numerical noise initially and give a higher effective resolution

Catalog: QC Aligned Systems

Catalog: Precessing Systems

- * One BH spinning* Either large or small
- * Continuous q: q<1 if large BH is spinning
 - q>1 if small BH is spinning

- * Spin magnitude fixed at 0.8
- * Vary spin angles, θ and ϕ
- * Typical coverage for a given q
- * 9 q's between 0.2 and 2.0