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Previous Studies
● Maximum Erad from Area Theorems by Hawking and Penrose is 

29%

● By applying perturbation theory to the collision of shock waves, the 
maximum Erad is 25% and 16.4% for 1st and 2nd order corrections, 
respectively (D'Eath and Payne, 1992)

● First numerical relativity study by Sperhake et al. (2008) found 
Erad= 14 +/- 3%

● Latest theoretical work:

– Black hole thermodynamics: Erad=13.4% (Siino 2013)

– Multipolar analysis of the ZFL: Erad=17% (Berti et al. 2010)



  

Bowen York Initial Data

Spurious Radiation Limit to v/c at infinity

● Analytic solution for the momentum constraint by 
assuming conformal flatness

● Uses punctures to solve Hamiltonian constraint

P/m=3



  

Lorentz Boosted Initial Data

● Solves both Hamiltonian and Momentum constraints 
using the puncture approach

● Superposes two LB spacetimes with attenuation

Spurious Radiation Limit to v/c at infinity

P/m=3



  

Numerical Infrastructure

● RIT's LazEv Numerical Relativity code

● Modified TwoPunctures initial data for superposed Lorentz 
Boosted Schwarzschild black holes

● To have stronger damping of the constraint violations we use 
the CCZ4 (Conformal and Covariant Z4) formulation of 
Einstein's Equations instead of BSSN

● To damp lapse gauge waves, we use a shock-avoiding gauge 
evolution and start at larger initial separations

● Accurate analytical calculations of the energy radiated at infinity



  

Initial Setup
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● Simple 1-parameter study

● ADM mass normalized to 1

● 6 simulations of each BY, LB BSSN, and LB 
CCZ4

● For LB CCZ4, d/M chosen sufficiently large 
that the binding energy between the BHs is 
small and gauge waves have time to dissipate

    d/M
adm

P/M
irr

100 0.3
100 0.5
200 1.0
200 2.0
300 3.0
400 4.0

Lorentz Boosted CCZ4

M
irr

-PM
irr



  

Results
● Using BY ID, we reproduce the work of Sperhake et al. 2008

● Higher uncertainty for BY due to spurious burst

● Lorentz Boosted data agrees with BY data within error bars



  

Exponential Fit
● Extrapolation to infinite P/M

irr
 using E=A exp( -b*M

irr
/P )

● To test robustness, we perform a series of exponential fits

● Using all data up to P/M
irr
=4, we find between 16 and 19% 

energy radiated 



  

Sources of Uncertainty
● Spurious Radiation ~ 1%

● Infinite Radius ~ 0.2%

● Truncation Error ~ 1%

● Infinite initial separation ~ 2%

● Difference in final mass ~ 1-3%

● Uncertainty in initial irreducible mass ~ 2% for P/Mirr=4



  

ZFL Fitting
● Extrapolation to infinite P/M

irr
 using ZFL as in Sperhake et al. 

2008

● 12-13% energy radiated



  

Conclusions

● We produced a series of accurate BHB head-
on collisions and calculated the energy radiated

● Despite the low uncertainty in the energy, both 
fittings work well, but yield different results

● To determine the fitting, we need to go to higher 
momentum – which will be very costly 
computationally
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