High Energy Collisions of Black Holes Revisited

James Healy

Ian Ruchlin, Carlos Lousto, and Yosef Zlochower

Center for Computational Relativity and Gravitation Rochester Institute of Technology

Eastern Gravity Meeting May 28, 2015

Outline

- Previous Results
- Bowen York ID/Lorentz Boosted ID
- Numerical Infrastructure
- Initial configurations
- Results and Error analysis

Previous Studies

- Maximum ${\rm E}_{\rm rad}$ from Area Theorems by Hawking and Penrose is 29%
- By applying perturbation theory to the collision of shock waves, the maximum E_{rad} is 25% and 16.4% for 1st and 2nd order corrections, respectively (D'Eath and Payne, 1992)
- First numerical relativity study by Sperhake et al. (2008) found E_{rad} = 14 +/- 3%
- Latest theoretical work:
 - Black hole thermodynamics: E_{rad}=13.4% (Siino 2013)
 - Multipolar analysis of the ZFL: E_{rad} =17% (Berti et al. 2010)

Bowen York Initial Data

- Analytic solution for the momentum constraint by assuming conformal flatness
- Uses punctures to solve Hamiltonian constraint

Spurious Radiation

Limit to v/c at infinity

Lorentz Boosted Initial Data

- Solves both Hamiltonian and Momentum constraints using the puncture approach
- Superposes two LB spacetimes with attenuation

Limit to v/c at infinity

Numerical Infrastructure

- RIT's LazEv Numerical Relativity code
- Modified TwoPunctures initial data for superposed Lorentz Boosted Schwarzschild black holes
- To have stronger damping of the constraint violations we use the CCZ4 (Conformal and Covariant Z4) formulation of Einstein's Equations instead of BSSN
- To damp lapse gauge waves, we use a shock-avoiding gauge evolution and start at larger initial separations
- Accurate analytical calculations of the energy radiated at infinity

- Simple 1-parameter study
- ADM mass normalized to 1
- 6 simulations of each BY, LB BSSN, and LB CCZ4
- For LB CCZ4, d/M chosen sufficiently large that the binding energy between the BHs is small and gauge waves have time to dissipate

Lorentz Boosted CCZ4

d/M_{adm}	P/M_{irr}
100	0.3
100	0.5
200	1.0
200	2.0
300	3.0
400	4.0

Results

- Using BY ID, we reproduce the work of Sperhake et al. 2008
- Higher uncertainty for BY due to spurious burst
- Lorentz Boosted data agrees with BY data within error bars

Exponential Fit

- Extrapolation to infinite P/M_{irr} using E=A exp(-b*M_{irr}/P)
- To test robustness, we perform a series of exponential fits
- Using all data up to $\text{P/M}_{_{irr}}{=}4,$ we find between 16 and 19% energy radiated

Sources of Uncertainty

- Spurious Radiation ~ 1%
- Infinite Radius ~ 0.2%
- Truncation Error $\sim 1\%$
- Infinite initial separation ~ 2%
- Difference in final mass ~ 1-3%
- 5 Inf Radius Spurious 1-M_f/M_{adm} vs E_{rad}/M_{adm} 4 Truncation Infinite Separation Initial Irreducible Mass 3 % Error 2 1 0 0.5 1.5 2.5 3.5 2 3 4.5 0 1 4 p/m
- Uncertainty in initial irreducible mass ~ 2% for P/Mirr=4

ZFL Fitting

- Extrapolation to infinite P/M_{irr} using ZFL as in Sperhake et al. 2008
- 12-13% energy radiated

Conclusions

- We produced a series of accurate BHB headon collisions and calculated the energy radiated
- Despite the low uncertainty in the energy, both fittings work well, but yield different results
- To determine the fitting, we need to go to higher momentum – which will be very costly computationally