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Overview

In this talk, the method of asymptotic approximants will be
applied to obtain analytic solutions for:

I an elliptic integral important to light bending.

I nonlinear differential equations of fluid dynamics.

I the analytic continuation of certain truncated expansions of
thermodynamics and astrophysics
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History of Asymptotic approximants

I 1961: Baker & Gammel’s Padé Approximant theorem states when an
approximant is expected to converge.

...

I Jumps and Starts that invoke Baker & Gammel’s idea, but nothing
formalized as a method

...

I 2012: (Barlow et al, J. Chem. Phys., 2012) An asymptotically consistent
approximant for soft-sphere fluids

I 2013-2015: Additional papers in thermodynamics start to form a unified
approach to solving problems where behavior is known at two ends.

I 2015-2017: Method, now coined “asymptotic approximants”, applied to
boundary layer problems in fluid dynamics. Leads to a methods Paper
(Barlow et al, QJMAM, 2017).

I 2017-present: Nate and Steve start working with Josh as the method is
applied to astrophysics. Leads to two papers on light bending and a
collaboration with Ofek & CCRG folks on application to gravitational
waves.
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Example: Integral for light bending

The governing equation for trajectories of light around a Kerr black-hole
in the equatorial plane is given by

φ(r) = �π +

∫ r0/r

0

g(ŷ)dŷ

where

g(ŷ) =
u0[b � 2u0(b � a)ŷ ]

[1� 2u0ŷ + a2u2
0 ŷ

2]
∑
1 + ŷ � 2(b � a)2u3

0 ŷ
2
)1/2

dŷ

(1� ŷ)1/2
,

u0 = 1/r0, a is spin, and other parameters (b, r0) defined below.

ICO

b

bc

rc φ

r→∞

φ→ α

φ → −π

X

Y

Figure 1: Definition sketch for the photon trajectory, parameterized as r = r(φ).  Indicated in this figure is the angle of closest approach, φ0 (φ0<0 as 
drawn), the radius of closest approach, r0, and the impact parameter, b.  Critical values of the closest approach and impact parameters (associated 
with the event horizon) are denoted with a subscript c. 

φ0

Photon Trajectory

Critical Photon Trajectory

Black Hole

Chandrasekhar S 1983 The mathematical theory of black holes, International Series of Monographs on Physics.
Volume 69 (Clarendon Press/Oxford University Press).
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Example: Integral for light bending

Let y ≡ r0/r .

φ(y) = �π +

∫ y

0

g(ŷ)dŷ

What can we do to solve this?

y
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φ
+
π

0

1

2

3

4

5

6

7

8

9

10
25 terms
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φ = φ0 +
√
y − 1

∑N
n=0 cn(y − 1)n

φ =
∑N

n=0 any
n

◦ numerical

Series solutions have the nice feature
of being analytical. However,
they diverge due to mathematical
(negative or complex y) singularities
that impose a radius of convergence
that infiltrates the positive real line!

Solution shown here for a = 1, b = 2.2222.
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Example: Integral for light bending

We can use the analytical information from the series, get past the radius
of convergence, and bridge the gap in the solution as follows:

I We know that the expansion of the integral about y = 0 is

φ =
∞∑

n=0

any
n

I We also know that the leading order behavior about y = 1 is

φ = φ0 + c0

√
y � 1

I Lets make up a function that (when expanded about y = 0) limits
to the series above while also limiting to the square root behavior as
y → 1. How about this (bear with me here):

φA = φ0 +
√

1� y
∞∑

n=0

An(y � 1)n

I In this, we have already satisfied the correct leading y → 1 behavior.

I The An are not known at this point! We will choose them in order
to meet our other goal . . . 6 / 36



Example: Integral for light bending

φA = φ0 +
√

1� y
∞∑

n=0

An(y � 1)n

We “choose” the An’s such that the expansion of the above about y = 0
equals the expansion of the original integral about y = 0, namely:

φ =
∞∑

n=0

any
n.

This can be viewed as solving a linear system (replace ∞ with N)

φA(0) = f0(A0 . . .AN) = a0

φ′A(0) = f1(A0 . . .AN) = a1

φ′′A(0) = f2(A0 . . .AN) = 2 a2

...

φ
(N)
A (0) = fN(A0 . . .AN) = N! aN

But a matrix inversion is not saving us much (if any) over numerical
integration of the original integral!! We can do better . . .
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Example: Integral for light bending

φA = φ0 +
√

1− y
∞∑

n=0

An(y − 1)n

1. Replace the LHS of above with expansion about y = 0
∞∑

n=0

any
n = φ0 +

√
1− y

∞∑

n=0

An(y − 1)n

2. Isolate the An series on one side

(1− y)−1/2

[
−φ0 +

∞∑

n=0

any
n

]
=
∞∑

n=0

An(y − 1)n

3. Expand the LHS of above about y = 0
∞∑

n=0

Gny
n =

∞∑

n=0

An(y − 1)n

4. Replace ∞ with N and this becomes an identity with the solution for the
coefficients

An =
1

n!

N∑

m=0

Γ(m + 1)

Γ(m − n + 1)
Gm
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Example: Integral for light bending

The Approximant doesn’t take that many terms before locking in!

y
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

φ
+

π
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φ =
∑N

n=0 any
n

φ = φ0 +
√
y − 1

∑N
n=0An(y − 1)n

◦ numerical

N = 4

N = 6

N = 4, 6

N = 2 N = 2

Solution shown here for a = 1, b = 2.2222.

(show trajectory animation)
More details in:
R. J. Beachley, M. Mistysyn, J. A. Faber, S. J. Weinstein, and N. S. Barlow. Accurate closed-form trajectories of
light around a kerr black hole using asymptotic approximants. Class. Quant. Grav., 35(20):128, 2018.
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Obligatory Sherlock Holmes Quote

“See the value of imagination... We imagined what
might have happened, acted upon the supposition, and
found ourselves justified”

- A. C. Doyle from “Silver Blaze” (1892)
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Asymptotic Approximants

I Hybrid of two well-known mathematical techniques
I Asymptotic Matching - combining two overlapping asymptotic

expansions
I Padé Approximants - series expansion of rational function

(polynomial over polynomial) about given point is same as
true expansion about that point

I May be constructed when asymptotic behaviors are known in
two different regions of a domain.

I Definition:
I Form of approximant matches the behavior in one limit
I Unknowns are chosen to match the behavior in the other limit
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Definition (Barlow et al, QJMAM 2017)

Given a power series representation of some function f (x):

f =
∞∑

n=0

an(x − x0)n, (1)

and an asymptotic behavior

f → fa(x) as x → xa,

where xa 6= x0, an asymptotic approximant is any function fA(x) that may be
expressed analytically in closed form and that satisfies the following three
properties:

1. The N-term Taylor expansion of fA about x0 is identical to the N-term
truncation of (1).

2. lim
x→xa

(fA/fa) = constant for any N.

3. The sequence of approximants converges for increasing N.

Asymptotic approximants approximate and constrain the analytic
continuation of an expansion such that the correct asymptotic limit (in
some other region) is obtained.
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Flow near a flat plate

steady, incompressible, 2-D, neglect gravity, v ⌧ u, @
@x ⌧ @

@y

governing “boundary layer” equations:

@u

@x
+

@v

@y
= 0

u
@u

@x
+ v

@u

@y
= ⌫

@2u

@y2

boundary conditions:

u = v = 0 at y = 0
u ! U as y ! 1

Blasius (1908)

picture from Schlichting

or

u = U, v = 0 at y = 0
u ! 0 as y ! 1

Sakiadis (1961)
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Similarity transform

⌘ = y
p

U/(⌫x), u = Uf 0(⌘), v = [⌘f 0(⌘)� f (⌘)]
p
⌫U/(4x)

single nonlinear ordinary di↵erential equation in f (⌘):

2f 000 + ↵ 00 = 0

boundary conditions:

Blasius Problem

f (0) = f 0(0) = 0, f 0(1) ! 1

Sakiadis Problem

f (0) = 0, f 0(0) = 1, f 0(1) ! 0
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Power Series Solution to the Blasius/Sakiadis Problem

2f 000 + ↵ 00 = 0

f (0) = a0, f
0(0) = a1, f

0(1) ! b

f =
1X

n=0

anx
n

an+3 =

�
nP

j=0

an�j(j + 1)(j + 2)aj+2

2(n + 1)(n + 2)(n + 3)
.

I requires f 00(0) ⌘  , coe�cient of the wall shear

f = a0 + a1⌘ +


2
⌘2 + a3()⌘

3 + a4()⌘
4 + . . .

I numerical estimates of :

I Blasius flow: 0.33205733621519630 (Boyd, 1999)
I Sakiadis flow: �0.44374733 (Cortell, 2010)
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Power Series Solution to the Blasius/Sakiadis Problem

2f 000 + ↵ 00 = 0

Blasius Problem

η
0 5 10 15

f

0

2

4

6

8

10

12 Blasius Series

f (0) = f 0(0) = 0, f 0(1) ! 1

Sakiadis Problem

η
0 5 10 15 20

f

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Sakiadis Series

f (0) = 0, f 0(0) = 1, f 0(1) ! 0
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Approximant for the Blasius Problem

We start with an approximant form that matches f ′(∞)→ 1:

fA = η + B � B

(
1 +

N∑

n=1

An η
n

)−1

and follow steps from before to find the An’s:

1.
∞∑

n=0

anη
n = η + B � B

(
1 +

N∑

n=1

An η
n

)−1

2. [
η/B + 1� 1

B

∞∑

n=0

anη
n

]−1

= 1 +
N∑

n=1

An η
n

3. Expand LHS about η=0. JCP Miller’s formula leads to a recursive
solution:

An>0 =
1

B

n∑

j=1

ãj An−j , A0 = 1, ã1 = �1, ãj>1 = aj
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Axproximants to the Blasius/Sakiadis Problem

2f 000 + ↵ 00 = 0

Blasius Problem

η
0 5 10 15

f

0

2

4

6

8

10

12 S9

S6

S12

S15 A6,9,12,15

A18-27

S21,27

S18,24

f (0) = f 0(0) = 0, f 0(1) ! 1

Sakiadis Problem

η
0 5 10 15 20

f

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S6

S8S4
A4

S10

A8, 10

A6

f (0) = 0, f 0(0) = 1, f 0(1) ! 0

(Barlow et al, QJMAM 2017)
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Transform back to physical variables

Blasius Problem

x
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

y
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Sakiadis Problem

x
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y
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0.04
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u

(Barlow et al, QJMAM 2017)
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Some other nonlinear ODEs we’ve solved:

Falkner-Skan equation for boundary layers over a wedge

. η
0 2 4 6 8 10 12 14

f

-1

0

1

2

3

4

S10

S20

S25

A10

A15

A20,25

f ′′′ + ff ′′ + β(1− f ′2) = 0
f(0) = 0, f ′(0) = 0, f ′(∞) = 1

S15

0.02

Belden et. al (to appear in QJMAM, Spring 2020) 20 / 36



Some other nonlinear ODEs we’ve solved:

Flieril-Petviashvili model for the motion of Jupiters red spot

. r
0 1 2 3 4 5 6 7 8 9 10

u

-2.5

-2

-1.5

-1

-0.5

0

A6

A6

A8
S8,12,16

A8

A10,12,14,16S6,10,14

A10,12,14,16

u′′ + 1
r u

′ − u− u2 = 0
u′(0) = 0, u(∞) = 0

Barlow et. al. (QJMAM, 2017) 21 / 36



Some other nonlinear ODEs we’ve solved:

Currently Working on w/ A. Harkin, A. Giammarese, J. Tarantino:

Rayleigh-Plesset Equation for Oscillating Bubbles

0 0.5 1 1.5 2 2.5 3

t

0.5

1

1.5

R numerical
A5
A10
A15
A20
S20

RR̈+ 3
2(Ṙ)2 + δ 1

R − αβ 1
R3 = γ

R(0) = R0, R′(0) = V0
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Let’s try some harder problems. . .

What if you have no governing equation to start from (integral,
differential equation, etc.) ?

What if you only have a limited number of terms in an
expansion. . . and the expansion diverges?! (at some point)

This is the case for the virial expansion equation of state from
thermodynamics.

P

ρkT
= 1 + B2ρ+ B3ρ

2 + . . .
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calculating fluid properties

Properties such as energy, entropy, etc. can be calculated by
applying thermodynamic laws to an equation of state.

I ex. ideal gas
P = ρkT

I assumes no interaction b/w fluid molecules
I valid when molecules are “far enough” apart (limit as ρ→0)
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virial series

What if molecular interactions are important? (non-ideal fluid)

I virial equation of state (virial series)

P = kT
J∑

j=1

Bj(T )ρj

B1 = 1, B2 = −1

2

∫
f1,2dr1,2, . . .B8 = 18-dimensional integral

I intermolecular interactions accounted for
I expansion of P(ρ,T ) about ρ=0 (ideal gas limit)
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virial series for a model fluid (square-well)

0 0.5 1 1.5 2
ρ/ρc

0

1

2

3

4

5

6

7
P
/P

c

V6V3V2

V5 V4
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critical point & scaling

I The thermodynamic critical point (ρ,T ,P) = (ρc ,Tc ,Pc) occurs
where

(
∂P

∂ρ

)

T ,N

= 0;

(
∂2P

∂ρ2

)

T ,N

= 0;

(
∂3P

∂ρ3

)

T ,N

≥ 0.

I universal critical scaling:

(P − Pc)Tc ∼ C sgn

(
1− ρ

ρc

) ∣∣∣∣1−
ρ

ρc

∣∣∣∣
δ

as ρ→ ρc

I (Pelissetto & Vicari, Phys Rep 2002): δ = 4.789(2)
I branch-point singularity at ρ = ρc .
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critical isotherm approximant

We start with an approximant form that matches scaling behavior:

PA = Pc �
N∑

n=0

Anρ
n

(
1� ρ

ρc

)δ

and follow steps from before to find the An’s:

1. (
Pc � kTc

N∑

n=1

Bn(Tc)ρn

)(
1� ρ

ρc

)−δ
=

N∑

n=0

Anρ
n

2. Expand LHS about ρ=0. JCP Miller’s formula and Cauchy’s
product rule leads to a recursive solution:

An =
PcΓ(δ + n)

n!ρncΓ(δ)
� kTc

Γ(δ)

n−1∑

j=0

Bn−jΓ(δ + j)

ρjc j!
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critical isotherm approximant

PA = Pc −
N∑

n=0

Anρ
n

(
1 −

ρ

ρc

)δ

0 0.5 1 1.5 2
ρ/ρc

0

1

2

3

4

5

6

7
P
/P

c

V6V3V2

A2 to A6V5 V4

(Barlow et al, JCP 2015)
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Predict stuff from the approximant!

We have a critical isotherm approximant

PA = Pc �
N∑

n=0

Anρ
n

(
1� ρ

ρc

)δ

with coefficients

An =
PcΓ(δ + n)

n!ρncΓ(δ)
� kTc

Γ(δ)

n−1∑

j=0

Bn−jΓ(δ + j)

ρjc j!

Recall that this could be posed as a system with N equations and N
unknowns (A0, A1,. . . ,AN). Lets swap an unknown. Let one of the inputs
(ρc , Pc , δ) be an unknown, keep N equations, and let the series have one
less coefficient. This is equivalent to letting AN=0 in above, leading to

Pc �
kTcN!

Γ(δ + N)

N∑

j=1

Γ(δ + N � j)

(N � j)!
Bjρ

j
c = 0

The above can be used to predict Pc , ρc , or δ.
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Predict stuff from the approximant!

Pc �
kTcN!

Γ(δ + N)

N∑

j=1

Γ(δ + N � j)

(N � j)!
Bjρ

j
c = 0

N
1 2 3 4 5 6 7

ρ
c

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Given all other variables as inputs, the ◦’s are the fastest converging roots of
the remaining ρc polynomial. The dashed line is the prediction from molecular
simulations of a Lennard-Jones fluid.
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scaling → thermodynamic surface near c.p.

I along critical isotherm (T = Tc):

(P/Pc − 1) ∼ ±D0 (1− ρ/ρc)δ

I along critical isochore (ρ = ρc):

(
∂P
∂ρ

)
T>Tc

∼ 1/Γ+ (T/Tc − 1)γ

1
1.1

1.2
1.3

0 0.5 1 1.5 2

0

1

2

3

4

5
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7

8

9

10

ρ/ρc

T /Tc

P
/P

c

(Pelissetto & Vicari, 2002): δ = 4.789(2), γ = 1.2372(5)

(Barlow et al, JCP 2015)
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What’s next on our plate?

Pre-2005 schematic:

K. S. Thorne, “Spacetime Warps and the Quantum World: Speculations about the Future,” in R. H. Price, ed.,

The Future of Spacetime. W. W. Norton, New York, 2002, pp. 109-152.

Now thanks to Numerical Relativity:

Taken from the Gravitational Wave Open Science Center
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Gravitational Waveform Approximant

Preliminary Work:
I Expand known PN expansion about some negative time t = a

I Ultimate Goal: Form approximant that matches this new expansion at
t = a and matches known behavior as t →∞, and hopefully (as in
problems of the past) pick up everything in-between! (cartoon on left)

I Where we are now: constructed approximant that matches expansion at
t = a and inflection at t = 0. (figure on right)

I Joint NSF/BSF proposal submitted with Ofek Birnholtz . . . wish us luck!

Close Approach and 
Coalescence Region

t

f

tc

f ~ At+B as t®¥

•

a

Asymptotic Approximate Region

•
BH Approach 

PN Expansion Accurate Coalesced BH

time
-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0

fr
eq
u
en

cy

50

100

150

200

250

Numerical Relativity Data

3.5 PN expansion

3.5 PN Asymptotic Approximant

On right: BHs of equal mass and zero spin. NR data in-house from Jam Sadiq.
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Asymptotic Approximants Group

www.rit.edu/bwgroup
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