Panel: Model selection with gravitational wave observations

Strong Gravity and Binary dynamics, Oxford, MS 2017-02-27

Panel:
Richard O'Shaughnessy
Salvatore Vitale
Chris Pankow
Simon Stevenson

Rules of thumb

- Distributions more useful than rates
- Scale tricky (IMF, all past SFR, distribution of conditions, many channels)
- Functions can encode an infinite number of parameters [e.g., ROS PRD 2013]
- At least one distribution (chirp mass) is easy to measure
- Robust observables are tricky
(Detected distribution)

Dominik et al (2015: 1405.7016)

- Cluster formation: strong spin misalignment $=\chi_{\text {eff }}<0$
- Mass gaps
- (e.g., pair instability SN)

Do we need more proof of concept calculations?

- Several for discrete model selection or ad-hoc mixtures, but...
-When do we / how do we measure real parameters?

Mukherjee, ROS et al (in prep) [based on ROS et al 2008,2010]

Reconstructing and reporting the observations

- Density estimation

Mandel et al 2017 MNRAS

Wysocki, ROS (in prep)
[includes spin, real measurement errors]

How many events to distinguish populations?

- KL divergence: unambigous way to compute average information gain per event

$$
D_{K L}(p \mid q) \equiv \int d x p \ln p / q
$$

- Standard tool in probability and statistics
- Arbitrary dimensions / \# of observables. Coordinate-system independent
- Includes measurement error, selection bias (=apply to observed distribution)

$$
\langle\hat{L}(X) / n\rangle=\left\langle\frac{\ln p(n \mid \mu)}{n}\right\rangle-\left[H_{p_{*}}+D_{K L}\left(p_{*} \mid p\right)\right]
$$

- Trivial to use for for toy models (e.g., power laws, gaussians, ...)
- Hard part:
- Evaluating \& exploring the model space with sufficient accuracy
- KL divergence is infinitely sensitive to gaps / exclusions, which are always decisive
- As written, distinguishes two models (=points in hyperparameter space), not family

Salvo Vitale

- Questions from Richard \& audience
- Systematics: The approximants are approximate. How do you build confidence in the result given uncertainty in strong merger?
- What about NR (higher modes)? Precession? Uncertain high PN terms (tides?)
- Calibration errors: How can we test GR or measure EOS in future instruments, given systematic amplitude and phase errors?
- Dependence on parameters: What if tides / modified GR effects depend sensitively on nature of binary? How do we stack them?
- Prior: past infinity or in band?

TIGER - caveats

- Odds in favor of modGR not necessarily equivalent to "GR is wrong"
- Could be that waveform model is inappropriate to start with
- Something weird with the data or calibration
- Unaccounted (GR) physics
- E.g. non-linear NS tides (Essick+ 2016)
- Priors on GR parameters (?)
- Most of these effects shown to be under control in Agathos+ 2013

Measuring the mixture fraction

200 BBH

True underlying fraction of aligned
sources

Caveats - To dos

- Assumed what I called "aligned" is what the universe calls aligned - should include possible prior mismatch
- Can extend the model so that they also take into account mass ratios, eccentricity, or anything else that might be useful to distinguish
- Can include more than 2 models

Chris Pankow

- Questions from Richard and audience
- Does reweighting posteriors work?
- How do we deal with selection bias of real searches against interesting things (e.g., precessing; modified GR; ...)

Simon Stevenson

- Questions from Richard and audience
- Joint constraints: How can you do multi-observation constraints with an interpolated model? Interpolate all observations?
- [Technical] How does interpolation work safely and with high contrast? Basis functions for log(rate)?
- [Technical] Are you also interpolating observable universe (selection bias-selected) or full universe(including distribution of conditions and z)

Distinguishing a discrete model set straightforward

O1-scale

O2-scale

but this is driven by large rate differences. Rate is highly degenerate with other factors...

Distinguishing a discrete model set straightforward

- Mass distributions alone are more similar, given measurement error

O2-scale, as before

O2-scale, no rate info

Bayesian Model Selection

- GW PE: (mostly) straightforward application of Bayes' Law - posterior distribution on binary parameters derived from (mostly uninformative, but astrophysically motivated priors) and influenced through the data + waveform model through the likelihood ratio
- Obtain a set of samples of physical parameters of interest: chirp mass $\left(\mathcal{M}_{\mathbf{c}}\right)$, mass ratio (q), spin orientations and magnitudes ($\left.\mathbf{s}_{1}, \mathbf{s}_{2}\right)$, and at some point probably eccentricity (not addressed here)
- Question: Given a set of plausible astrophysical formation channels, how do we select a model resembling nature as well as quantify any parameters of that model?
- Need to map $\left\{\mathcal{M}_{\mathbf{c}}, \mathbf{q}, \mathbf{s}_{\mathbf{1}}, \mathbf{s}_{\mathbf{2}}\right\}$ to mass/spin spectrums, progenitor metallicity, SN kick prescriptions, evolutionary pathways, etc...

Bayesian Hierarchical Modeling

- Foreman-Mackey, et al. 2014 lays out the foundation
- convert $\mathrm{p}(\mathrm{mod} \mid \mathrm{obs}) \rightarrow \mathrm{p}($ mod $\mid P E)$

$$
p\left(\left\{h_{i}\right\} \mid \beta\right)=\prod_{i} p\left(h_{i}\right) \int \frac{p\left(\theta \mid h_{i}\right) p(\theta \mid \beta)}{p(\theta)} d \theta
$$

- Integral over model parameters (β) can be evaluated via importance sampling using parameter estimation $\left(\theta_{k}\right)$ samples

$$
\rightarrow p\left(\beta \mid\left\{h_{i}\right\}\right) \propto \prod_{i} \frac{1}{N} \sum_{k} \frac{p\left(\theta_{k} \mid \beta\right)}{p\left(\theta_{k}\right)} p(\beta)
$$

- Recasts the problem as a "higher level" parameterization with no dependence on original data $\left\{h_{i}\right\}$

Beyond Two Parameter Models

- Are kick direction prescriptions (isotropic / polar) measurable at the level of mass spectrums?
- Spoilers: No. Most mass spectrums are degenerate, and spins (Stevenson, et al. 2017, Rodriguez, et al. 2016) are required
$N_{\text {obs }}=10000$

Stevenson

Richard

- Slides from KITP talk, 2016

Familiar statistical challenge

- Inference via Poisson likelihood + bayes $L(\Lambda)=e^{-\mu} \frac{\mu^{n}}{n!} \prod_{k} \int d \lambda_{k} p\left(d_{k} \mid \lambda_{k}\right) p\left(\lambda_{k} \mid \Lambda\right)$

- Same likelihood for nonparametric, parametric, and physical models
- μ expected n (selection bias)
- $p\left(d_{k} \mid \lambda_{k}\right)$ measurements and error
- $p\left(\lambda_{k} \mid \Lambda\right)$ binary parameter distribution, given model parameters
- Informal approaches: weighted histograms (=gaussian mixture models)

Confronting theory with observations

A function has infinitely many degrees of freedom

Distributions vary significantly...

Distributions vary significantly...

(Detected distribution)
Dominik et al (2015: 1405.7016)

...and for physical reasons, like pair instability

...or multiple mergers and single star evolution

...that may be observationally accessible soon

Belczynski et al 1607.03116

Distinguishing a discrete model set straightforward

O1-scale

O2-scale

but this is driven by large rate differences. Rate is highly degenerate with other factors...

Distinguishing a discrete model set straightforward

- Mass distributions alone are more similar, given measurement error

O2-scale, as before

O2-scale, no rate info

Beyond the mass distribution: Power of spin

- High mass binaries may be strictly and positively aligned (fallback)
- Low spins required for GW150914...possible? [Kushnir et al]
- Tells us something about how massive stars evolve? About tides?
- Or favors dynamics?

Marchant et al A\&A 2016 (1601.03718)

