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GW150914: Short signal, in agreement with NR
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propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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VI. ASTROPHYSICAL IMPLICATIONS

The inferred black hole masses are within the range of
dynamically measured masses of black holes found in x-ray
binaries [76–80], unlike GW150914. For the secondary
black hole, there is a probability of 4% that it lies in the
posited 3–5M⊙ gap between observed neutron star and
black hole masses [76,77], and there is no support for the
primary black hole to have a mass in this range.
Binary black hole formation has been predicted through a

range of different channels involving either isolated binaries
or dynamical processes in dense stellar systems [81]. At
present all types of formation channels predict binary black
hole merger rates and black hole masses consistent with the
observational constraints from GW150914 [82–84]. Both
classical isolated binary evolution through the common
envelope phase and dynamical formation are also consistent
with GW151226, whose formation time and time delay to
merger cannot be determined from the merger observation.
Given our current understanding of massive-star evolution,
the measured black hole masses are also consistent with any
metallicity for the stellar progenitors and a broad range of
progenitor masses [85,86].
The spin distribution of the black holes in stellar-mass

binary black holes is unknown; the measurement of a spin
magnitude for at least one companion greater than 0.2 is an
important first step in constraining this distribution.
Predictions of mass ratios and spin tilts with respect to
the orbital angular momentum differ significantly for
different channels. However, our current constraints on
these properties are limited; implications for the

evolutionary history of the observed black hole mergers
are further discussed in [5].
The first observing period of Advanced LIGO provides

evidence for a population of stellar-mass binary black holes
contributing to a stochastic background that could be
higher than previously expected [87]. Additionally, we
find the rate estimate of stellar-mass binary black hole
mergers in the local Universe to be consistent with the
ranges presented in [88]. An updated discussion of the rate
estimates can be found in [5].
A comprehensive discussion of inferred source param-

eters, astrophysical implications, mass distributions, rate
estimations, and tests of general relativity for the binary
black hole mergers detected during Advanced LIGO’s first
observing period may be found in [5].

VII. CONCLUSION

LIGO has detected a second gravitational-wave signal
from the coalescence of two stellar-mass black holes with
lower masses than those measured for GW150914. Public
data associated with GW151226 are available at [89]. The
inferred component masses are consistent with values
dynamically measured in x-ray binaries, but are obtained
through the independent measurement process of gravita-
tional-wave detection.Although it is challenging to constrain
the spins of the initial black holes, we can conclude that at
least one black hole had spin greater than 0.2. These recent
detections in Advanced LIGO’s first observing period have
revealed a population of binary black holes that heralds the
opening of the field of gravitational-wave astronomy.

FIG. 5. Estimated gravitational-wave strain from GW151226 projected onto the LIGO Livingston detector with times relative to
December 26, 2015 at 03:38:53.648 UTC. This shows the full bandwidth, without the filtering used for Fig. 1. Top: The 90% credible
region (as in [57]) for a nonprecessing spin waveform-model reconstruction (gray) and a direct, nonprecessing numerical solution of
Einstein’s equations (red) with parameters consistent with the 90% credible region. Bottom: The gravitational-wave frequency f (left
axis) computed from the numerical-relativity waveform. The cross denotes the location of the maximum of the waveform amplitude,
approximately coincident with the merger of the two black holes. During the inspiral, f can be related to an effective relative velocity
(right axis) given by the post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where M is the total mass.
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Outline

• NR is the best solution to GR, and differences matter

• Illustration 1: Waveforms

• Illustration 2: Posteriors

!

• Using NR directly with GW data

• A strategy

• Finite duration & hybrids

• Sparse density & interpolation, placement

• NR-calibrated surrogate (or GP) models

4



NR solves GR more completely, accurately

• Analytic models are good first approximations but not perfect

!

• Example: Edge-on line of sight
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q = 2.0, a = 0.0,M = 70M� q = 2.0, a = �0.8,M = 70M�



NR solves GR more completely, accurately

• One reason: “higher modes” are missing or not calibrated
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Differences matter

• Conclusions about BBH derived from NR are often slightly different

• Even where models are “well-calibrated”
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Differences matter
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Synthetic data 
PSD similar to GW150914-like sensitivity 
Inclination ~ pi/4, SNR=20 
Nonprecessing analysis

No higher modes With higher modes
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Differences matter
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Synthetic data 
PSD similar to GW150914-like sensitivity 
Inclination ~ pi/4, SNR=20 
Nonprecessing analysis
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Omission introduces orientation-dependent error
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come equally important in terms of Feff . Furthermore,
the losses observed for � = 0 seem a good guess of those
observed for the spinning cases, particularly for the high-
est masses. We note that it would have been interesting
to study cases with spins closer to ±1 and higher mass ra-
tios. However, the only case with reasonably high spins
and mass ratio available in the SXS catalogue was the
q = 3,� = ±0.5 used here.
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FIG. 7. Systematic biases obtained for the total mass (left)
and e↵ective spin (right) for a q = 3 non-spinning system
for eaLIGO (top) and AdvLIGO (bottom) as a function of
the location of the detector on the (upper hemisphere) sky of
the source. Note that the di↵erent interaction of the modes
as a function of the angle ' generates biases to either larger
or lower values, which in general grow (in absolute value)
as ✓ does. Biases to low masses are more common due to
the higher frequency content of the signal for most values
', has to be imitated by low mass templates. Last, note that
✓ = 0 corresponds to the center of the plot while its perimeter
corresponds to ✓ = ⇡/2.

VI. PARAMETER BIAS

Due to its importance in GW data analysis, we will
express results not as a function of (q,M) but rather
consider the so called chirp mass parameter M

c

[45]
and the total mass M . Before discussing the aver-
aged systematic errors measured due to the neglection
of HM, we want to note that the intrinsic parame-
ter bias ⌅

i,0 of the SEOBNRv1-ROM model towards
our hybrids containing only the quadrupolar modes
were never larger than (|�M |(%), |�M

c

|(%), |��|) =
(2%, 2%, 0.04) for all the total mass range, except for
the (q,�) = (3,+0.5) case, for which these reached max-
imum values of (4%, 6%, 0.05)[46].

The main e↵ect of the HM is introducing large
frequencies in the detector band, thus one should expect
that the quadrupolar SEOBNRv1 waveform best match-
ing a target waveform h(⌅) with parameters ⌅ should
have a larger frequency content than that corresponding
to the quadrupolar template hB(⌅) having the intrinsic
parameters ⌅ of the target. Intuitively, this can be
achieved via introducing biases towards lower total mass
and larger positive spin. Fig.7 shows the biases in total
mass and spin obtained for all values of (✓,') (thus
averaged over  ) for a q = 3 non-spinning system for
the cases of eaLIGO and AdvLIGO. Note that ✓ = 0
corresponds to the center of the plot while its perimeter
corresponds to ✓ = ⇡/2. We see how the two di↵erent
ways of increasing the template frequency (lowering
mass and raising spin) compete along the di↵erent
(✓,'). As expected, the absolute value of the bias
grows as ✓ does. Also, the di↵erent interaction of the
modes as a function of ' generates a sort of dipolar
pattern where biases vary from positive to negative. It is
remarkable that while averaged biases shown in Fig.8 for
the systems in Fig. 7 are of (�M,��) ⇠ (�5%,�0.1)
for eaLIGO and ⇠ (�3%, 0) for AdvLIGO, biases for
particular edge-on orientations can be much larger, up
to (�M,��) ⇠ (�40%,�0.7) for the case shown for
eaLIGO and ⇠ (�20%,�0.4) for the one shown for
AdvLIGO. Note also that even though the total mass
chosen for the eaLIGO example is almost a half of that
chosen for AdvLIGO, systematic biases are much lower
for the latter case due to the lower f0 of AdvLIGO,
which makes it much more sensitive to the long PN
inspiral dominated by the quadrupolar modes.
Fig. 8 shows the averaged parameter bias over the
observable volume, given by Eq.(9), for the studied
targets. As a general trend, neglection of HM causes
observation-averaged biases towards lower (�, M , M

c

)
which increase as M and q do. As expected, biases are
much larger for iLIGO and eaLIGO than for Adv.LIGO.
In particular, note that the lower f0 of Adv.LIGO allows
for an excellent recovery of M

c

for most of the M range.
This is due to the larger weight of the PN inspiral in
the detector band. Regarding spinning cases, systematic
biases are larger for negative spin cases than for positive
spin ones. For q = 1 we only show the eaLIGO cases,
which were the only ones having systematic biases
comparable to those of the other cases.

We now compare the observation-averaged biases to
the statistical uncertainty we expect for each detector
via computing the minimum SNR ⇢0 at which PE would
be dominated by the systematic biases. We note that,
unlike the volume loss R

i

, the quantity ⇢0 =
p
1/2✏ is

extremely sensitive to tiny variations in the parameters
recovered by the Nelder-Mead algorithm, which has the
risk of settling in a local maximum. In particular, for an
error �✏ in the estimation of ✏, one gets a variation for ⇢0
of�⇢0 ⇠ ✏�3/2�✏. This will specially a↵ect regions of the
parameter space where systematic biases are lower and

J. Calderon-Bustillo et al 1511.02060 
(early aLIGO) 
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q = 1, �1z = 0.0 q = 8, �1z = 0.5 q = 8, �1z = 0.0 q = 8, �1z = �0.5

FIG. 4: Optimal SNR (top panel) and fitting factor of quadrupole templates (bottom panel), averaged over polarization angle  for
binaries with total mass M = 100 M�, located at 1 Gpc. The y-axis shows the inclination angle ◆ in radians and the x-axis shows
the initial phase of the binary '0 in radians. The equator (◆ = ⇡/2) corresponds to “edge-on” orientation while the poles (◆ = 0, ⇡)
correspond to “face-on” orientation. Di↵erent columns correspond to di↵erent mass ratios and spin. It may be noted that the fitting
factor as well as the intrinsic luminosity are smallest (largest) at ◆ = ⇡/2 (◆ = 0, ⇡) where contribution from the non-quadrupolar
modes is the largest (smallest), illustrating the selection bias towards configurations where non-quadrupole modes are less
important.

orientation. This e↵ect is reversed for the case of edge-on orien-
tations. Thus, if we want to calculate the e↵ect of subdominant
modes on detection and parameter estimation of a population
of binary black holes, the e↵ect has to be averaged over all
orientations after appropriately weighting each orientation.

We evaluate the e↵ective volume [13] of a search, defined
as the fraction of the volume that is accessible by an optimal
search (corresponding to a fixed SNR threshold), by averaging
over all the relative orientations in the following way:

Ve↵ (m1,m2, �1z, �2z) =
⇢3

opt FF3

⇢3
opt

, (2.3)

where ⇢opt is the optimal SNR of the full signal, FF is the fitting
factor of the dominant mode template, and the bars indicate
averages over all (isotropically distributed) orientations 3. The
dominant-mode template family is deemed e↵ectual for detec-
tion when the e↵ective volume is greater than 90%; or when
the e↵ective fitting factor FFe↵ := V1/3

e↵ is greater than 0.965.
Similarly, we define the e↵ective bias [13] in estimating an

intrinsic parameter � as

��e↵(m1,m2, �1z, �2z) =
|��| ⇢3

opt FF3

⇢3
opt FF3

, (2.4)

where �� is the systematic bias in estimating the parameter �
for one orientation, FF is the corresponding fitting factor, and

3 This corresponds to uniform distributions in the phase angle '0 2 [0, 2⇡),
polarization angle  2 [0, 2⇡), and the cosine of the inclination angle cos ◆ 2
[�1, 1]. Note that we assume that the binaries are optimally located (i.e.,
the angles ✓, � describing the location of the binary in the detector frame
on the sky are set to zero). The error introduced by this restriction is very
small (⇠ 0.1%) due to the weak dependence of the matches on (✓, �) and
the strong selection bias towards binaries with ✓ ' 0, ⇡, where the antenna
pattern function peaks [13].

⇢opt the corresponding optimal SNR. Here also the bars indicate
averages over all orientations. The e↵ective bias provides an
estimate of the bias averaged over a population of detectable
binaries with isotropic orientations. We compare them against
the sky and orientation averaged statistical errors. Statistical
errors are computed using the Fisher matrix formalism employ-
ing quadrupole-only templates. The quadrupole-mode template
family is deemed faithful for parameter estimation when the
e↵ective biases in all of the three intrinsic parameters M, ⌘,�e↵
are smaller than the 1� statistical errors in measuring the same
parameter for an orientation-averaged SNR of 8.

III. RESULTS AND DISCUSSION

In this section, we evaluate the performance of the
quadrupole-mode inspiral-merger-ringdown template family
IMRPhenomD, against the “full” hybrid waveforms by com-
puting the fitting factor of the template and inferring the pa-
rameter biases from the best matched parameters. Figure 4
shows the optimal SNR of the hybrid waveforms and fitting
factor of the quadrupole-mode templates at di↵erent values of
◆ and '0 (averaged over the polarization angle  ). Figure 5
shows the systematic bias in estimating parameters total mass
M, symmetric mass ratio ⌘ and e↵ective spin �e↵ , using the
quadrupole-mode template family. It is clear that for the q = 1
case (left column) the fitting factor is close to 1 and the sys-
tematic errors are negligible for all orientations, indicating the
weak contribution of subdominant modes. For mass ratio 8, the
fitting factor can be as low as ⇠ 0.84 for binaries that are highly
inclined (◆ ' ⇡/2) with the detector, where the contribution
from non-quadrupole modes is the highest. However, these are
the orientations where the SNR is the minimum (see Fig. 4).
Similarly, the systematic biases are typically the largest (small-
est) for the edge-on (face-on) configurations where the SNR is
the smallest (largest). Hence GW observations are intrinsically
biased towards orientations where the e↵ect of non-quadrupole

Varma and Ajith,1612.05608 



Should you care?

• Even if biases tolerable on event-by-event basis, they are systematic

!

• Some conclusions may require stacking and/or weak effect

• Mass of small companion  [NS; mass gaps]

• Evidence for precessing binary population [clusters; kicks]

• Tests of GR  [example below]
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FIG. 2: Left panels: Shaded regions show the 68% and 95% credible intervals on the combined posteriors on ✏, ⇠ from multiple observations of
GR signals plotted against the number of observations by Advanced LIGO. The GR value (✏ = ⇠ = 0) is indicated by horizontal dashed lines.
The mean value of the posterior from each event is shown as an orange dot along with the corresponding 68% credible interval. Posteriors on
✏ are marginalized over ⇠, and vice versa. Middle panel: The orange contours show the 68% credible regions of the individual posteriors on
the ✏, ⇠ computed from the same events while the thick red contour shows the 68% and 95% credible regions on the combined posterior. Right
panel: The width of the 68% credible region in the marginalized posteriors of �Mf /Mf and �� f /� f from multiple observations.

weighted SNR ' 15 when filtering with the best-fit GR wave-
form and would thus likely be detected by a standard detection
pipeline [30].

VI. CONCLUSIONS

The test that we propose assumes the validity of GR and
tests the null hypothesis by computing the posterior distribu-
tion for the parameters (✏, ⇠) that quantify a deviation from
the result in GR, where both parameters are identically zero.
Multiple observations could be combined to produce better
constraints on the deviation. We have seen that this test is able
to detect deviations from GR that are not constrained by radio
observations of the orbital decay of the double pulsar – the
tightest constraint available. The test is not based on a specific
theory and, consequently, could work in any theory in which
massive compact binaries inspiral, merge, and then ringdown.
Conversely, if the data were inconsistent with the null hypoth-
esis, then they would not be able to give any direct indica-
tion of which modified theory is responsible for the deviation
from GR. We expect this test to complement other GW-based
tests of GR, including those looking for specific modifications
to GR and those looking for generic parametrized deviations,
providing confidence in any statements of whether a given sig-
nal (or population of signals) is consistent with GR.

Although we have used the ISCO frequency of the final
Kerr black hole to delineate between inspiral and merger–
ringdown in this paper, alternative ways of splitting the sig-
nal are possible. We have verified that the main results are
robust against (reasonable) choices of cuto↵ frequencies. We
have neglected the e↵ect of spin precession and subdominant
modes in this paper. However, they can be readily included
in this method by incorporating these e↵ects in our GR model
h
gr

and also (in the case of precession) in the fitting formulas
for the final mass and spin. Systematic errors due to waveform

inaccuracies could be mitigated or quantified by using wave-
form models that are better calibrated to NR simulations as
they become available. Methods for mitigating the systematic
errors due to detector calibration errors have been indepen-
dently developed which involve marginalizing the posterior
distributions of the masses and spins over additional parame-
ters that model calibration errors [31]. Studies pertaining to
these aspects are to be reported in a forthcoming paper [32].

The test introduced in this paper has already had its first
application: This was one of the tests used to establish the
consistency of LIGO’s first gravitational wave detection with
a binary black hole signal as predicted by GR [33, 34].
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NR for parameter estimation I: Framework
• Parameter estimation for GW sources: Compare models and data, using gaussian statistics


!
!
!
!

• Idea:    [e.g., Pankow et al 2015 (1502.04370)]


• Integrate over extrinsic parameter space [NR can’t vary intrinsic params] 


!
!
!

• Stitch likelihood from discrete evaluations


• Currently: Aligned spin via fit (or GP)


!
• Posterior via Bayes
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ppost(�) =
Lmarg(�)p(�)�
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http://adsabs.harvard.edu/abs/2016PhRvD..94f4035A


NR for parameter estimation II: Checks

• Interpolation or fitting error

• Monte Carlo error

• Extraction error

• NR simulation resolution error

• Consistency between groups
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Simulation Resolution Test

Source/Template 
Resolution KL Divergence

n120/n120 0
n120/n110 2.0E-04
n120/n100 6.5E-04
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FIG. 9: Single runs of ILE with changing resolution and their corresponding PDFs: The top panel is a graph of different lnL vs total
mass curves with different numerical resolution. Here we use RIT-1a as the source and compare it to simulations with the same parameters
at different resolutions, specifically RIT-1b and RIT-1c. The results were evaluated with f

min

= 30Hz at a total mass M = 70MJ with a
inclination ı = 0.785. Here black is n120, purple is n110, and blue is n100. Even though the error is clearly minuscule, we convert the fits to
a PDFs for completeness. The bottom panel shows the PDFs for the three different resolutions (see Eq. 22). It is clear that these are all the
same PDFs, and the error introduced by different resolutions is irrelevant.

NR Label Resolution Mismatch
RIT-1a n120 0.0
RIT-1b n110 3.90e-5
RIT-1c n100 5.27e-5

TABLE VIII: Mismatch between waveforms with different nu-
merical resolutions: Here is a mismatch study between the different
resolutions for one NR simulation. Specifically RIT-1a vs RIT-1a,
RIT-1a vs RIT-1b, and RIT-1a vs RIT-1c. The results were evaluated
at M = 70MJ and ı = 0.785. The mismatch between the different
resolution is very small and is much smaller than our accuracy re-
quirement. We therefore expect the error introduced to be negligible.

C. Impact of simulation resolution

Here we analyze errors introduced by different numerical
resolutions. Higher resolutions simulations take longer to run
and computationally cost more than lower resolution ones. If
the effects of different resolutions are insignificant, numerical
relativist will be able to run at a lower resolution while not
introducing any systematic errors. Table VIII shows a match
comparison between the highest resolution RIT-1a and the two
lower ones, RIT-1b and RIT-1c. The null mismatch is not
included since it is the trivial calculation (M = 0.0). The
log of the mismatches are orders of magnitudes better than
our accuracy requirement (⇠ �2.8), and therefore introduce
errors that are negligible.

Using lnLmarg as our diagnostic to compare these three
simulations, we draw similar conclusions; see Figure 9. We
again see a error so small that changes between the three
curves are almost impossible to see, even far from the peak.
Table IX quantifies these extremely small differences. In
short, different resolutions have no noticable impact on our
conclusions. While this resolution study was only done for
a aligned RIT simulation, similar conclusions are expected

Resolution (M) D
KL

CI (90%)
n120 0 (68.8 - 71.5)
n110 2.0e-4 (68.8 - 71.6)
n100 6.5e-4 (68.7 - 71.5)

TABLE IX: KL Divergence and 90% confidence intervals be-
tween PDFs with different numerical resolution: This table shows
the D

KL

, calculated using Eq. 23, and 90% confidence intervals for
PDFs with the three different resolutions for RIT-1a. The D

KL

was
calculated comparing the 1D distributions to the PDF with n120 (no-
tice its D

KL

is zero i.e. they’re identical). The confidence intervals
also given to show the change between them. Based on the D

KL

results, the 1D posteriors are identical.

when a wider range of simulations are used.
Even though in this case the mismatch and ILE studies

show conclusively the minimal impact the numerical resolu-
tion has on the waveform, we generate 1D distributions from
the fits for completeness. It is not surprising to see in the bot-
tom panel of Figure 9 the posteriors from the three fits match
almost exactly. To quantify this similarity we calculate D

KL

;
shows the D

KL

as well as the CI for the corresponding PDFs.
Based on the D

KL

, these distributions are clearly identical
and using different resolutions does not effect the waveform
in any significant way. This resolution study was only done
for a aligned RIT simulation; a similar resolution investiga-
tion needs to be done for SXS simulations. We hypothesize
that this effect will also be minimal.

D. Impact of low frequency content and simulation duration

As demonstrated by Example 3 in Section III F above, the
available frequency content provided by each simulation and
used to the interpret the data can significantly impact our in-
terpretation of results. In this section, we perform a more sys-

J. Lange et al, RIT thesis &  LIGO P1700025

https://dcc.ligo.org/LIGO-P1700025
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Original RIT GW150914-like!
SXS event-like



Finite duration & Hybrids

• Familiar, well-used techniques for aligned (& precessing) spin
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FIG. 3: Example of hybrid waveform modes constructed by matching NR and PN modes. These hybrid waveforms are constructed
by matching q = 8, �1z = 0.5, �2z = 0 NR waveforms computed using the SpEC code with PN/EOB waveforms describing the
early inspiral. The horizontal axes show the time (with origin at the start of the NR waveforms) and the vertical axes show the GW
modes h`m(t). The matching region (1000M, 2000M) is marked by vertical green lines.

with the quadrupole modes of the hybrid waveforms discussed
above (cf. the dashed lines in Fig. 6). The waveforms are
generated in the Fourier-domain using the LALSimulation [49]
software package.

We compute fitting factors [50] by maximizing the overlap
(noise weighted inner product) of the template family against
the target hybrid signals and infer the systematic errors by
comparing the best match parameters with the true parameters.
The overlaps are maximized over the extrinsic parameters (time
of arrival t0 and the reference phase '0) using the standard
techniques in GW data analysis (see, e.g., [51]), while the
overlaps are maximized over the intrinsic parameters (M, ⌘, �1z

and �2z) of the templates using a Nelder-Mead downhill simplex
algorithm [52], with additional enhancements described in [13].
As the model of the noise power spectrum, we use the “zero-
detuned, high-power” design noise PSD [53] of Advanced
LIGO with a low frequency cut-o↵ of 20 Hz.

The contribution of subdominant modes in the observed sig-
nal depends on the relative orientation of the binary and the
detector. The SNR (and hence the volume in the local universe
where the binary can be confidently detected) is also a strong
function of this relative orientation. For e.g., binaries that
are face-on produce the largest SNR in the detector; however,
the contribution from subdominant modes is minimal for this

Varma and Ajith,1612.05608 
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FIG. 8. Comparison of NR and EOBNR maximum-radiation-frame modes hR
2m for the same run of Fig. 7 (SXS:BBH:0137). The NR

(EOBNR) curves are shown in solid blue (dashed red).

following test. We produce two sets of EOBNR inertial-frame
modes: (i) one is simply h2m

, obtained by rotation of the
hP

2m

’s according to the Euler angles in Eq. (A4), (ii) the other
is obtained by rotation of the hP

2m

’s according to the Euler
angles that parametrize the rotation from the NR maximum-
radiation frame to the inertial frame of an observer. Then we
compare these two sets of EOBNR modes to NR modes in
the inertial frame. We find that the (2, ±2) modes are hardly
affected by the discrepancies between êR, NR

(3) and êR, EOB
(3) ,

while the effect on the (2, ±1) modes is slightly larger, es-
pecially during the merger. We quantify the agreement by
computing the sky- and polarization-averaged unfaithfulness
with NR waveforms using the modified (NR-based) rotation,
and find no improvement with respect to the results shown
in Fig. 4 – several cases are actually worse at high total
masses. The overlap at low total masses is dominated by the
inspiral, where we have remarkable agreement between the
maximum-radiation-frame modes and between the Euler an-
gles, while at high total masses the main contribution to the
unfaithfulness comes from the merger-ringdown signal. Since
the EOBNR merger-ringdown is generated in the frame of
the remnant spin, the corresponding maximum-radiation axis
could be quite different from the NR one.

Finally, we assess the influence of the (2, 0) mode in the
maximum-radiation frame. While in the EOBNR model, by
construction, hR

20 = hP

20 = 0, in NR waveforms this mode
is nonzero, although at least an order of magnitude smaller
than other ` = 2 modes. We set the NR hR

20 to zero, rotate
the NR modes to the inertial frame, and compare them to the
original NR inertial-frame modes. In all considered cases, we
observe a negligible difference between them and no effect
on the unfaithfulness, and conclude that it is safe to neglect
hP

20 in the EOBNR model, at least for the BBH configurations
considered in this paper.

VII. CONCLUSIONS

The precessing EOBNR model discussed in this paper was
one of the waveform models used in the parameter-estimation
study of the first GW observation by LIGO, GW150914 [1].
Currently, it is the only waveform model that includes all 15
parameters that characterize a BBH coalescence. In this pa-
per, for the first time, we extensively tested the precessing
EOBNR model against 70 NR simulations that span mass ra-
tios from 1 to 5, dimensionless spin magnitudes up to 0.5, and
generic spin orientations. While we did not recalibrate the
inspiral-plunge signal of the underlying nonprecessing model,
we improved the description of the merger-ringdown wave-
form. In particular, we included different QNMs according
to the prograde/retrograde character of the plunge orbit and
we prescribed the time of onset of the ringdown according to
a robust algorithm that minimizes unwanted features in the
amplitude of the waveforms around merger. We introduced a
sky- and polarization-averaged unfaithfulness to meaningfully
compare precessing waveforms. We devised a procedure to
identify appropriate initial physical parameters for the model
given a precessing NR simulation. We found that for Ad-
vanced LIGO the precessing EOBNR model has unfaithful-
ness within about 3% against the large majority of the 70 NR
runs when the total mass of the binary varies between 10 M�
and 200 M� and inclinations ◆ = 0, ⇡/3, ⇡/2. This means
that the model is suitable for detection purposes of these
systems. We investigated the GW modes in the maximum-
raditation frame, and found very good agreement between NR
and precessing EOBNR model during the inspiral-plunge part
of the waveform. While the merger-ringdown signal is in good
agreement with NR in the majority of cases, there is still room
for future improvements, especially for the (2, ±1) modes.

No strong statements can be formulated about the size of
systematic errors when using precessing EOBNR in the con-
text of parameter estimation. For a NR simulation with param-
eters within the 90% credible intervals of GW150914, Ref. [1]
shows that precessing EOBNR gives an unbiased measure-
ment of the intrinsic parameters.

Babak, Taracchini, Buonanno 1607.05661 
[comparison paper, not a hybrid paper..same ideas]
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Interpolation and placement

• Familiar problem: 

• Model-based: Similar to final mass, spin, recoil formulae


• Form set by physics, symmetry principles


• BIC for model selection


!
!
!
!
!
!
!

• Nonparametric methods: gaussian processes & others


• Followup: greedy, via natural distance (incl. systematics);                                         
or target model error

18

Long history 
Boyle, Kesden, Nissanke 
Healy; Lousto;Zlochower 2014 
Rezzolla et al 
UIB

10

FIG. 9: Real (oscillatory)and imaginary (damping) part of the ring-
down frequency as a function of the final Kerr parameter af . A pos-
itive sign denotes a final BH parallel to the initial orbital angular
momentum, and negative sign antiparallel.

bital angular momentum ~L as,

~J = ~L + ~S 1 + ~S 2. (3.2)

Due to symmetry all angular momentum vectors are orthogo-
nal to the orbital plane and the only non-zero component is the
z-component. For simplicity of notation, we therefore drop
the vector notation, and write J, S i, etc., for the z-component.
We seek to approximate J, L, and correspondingly the final
Kerr parameter a f = J f /M2

f through a function of the mass ra-
tio and a single e↵ective spin parameter. Given that Eq. (3.2)
depends trivially on the sum of the individual spins, we at-
tempt the approximation

~J f ⇡ ~J f (⌘, ~S ), ~S = ~S 1 + ~S 2.

In the infinite mass ratio limit, ⌘ = 0, the final spin coincides
with the spin of the larger BH,

J f (⌘, S 1, S 2) = S 1 = S , a f (⌘, �1, �2) = �1. (3.3)

We will frequently use a rescaled version of our total spin S =
S 1 + S 2 to Ŝ = S/(1 � 2⌘), for which �1  Ŝ  1, consistent
with the extreme Kerr limit.

The data points are shown in Fig. 10. As can be seen, our
waveform coverage is densest at equal mass and sparser at
higher mass ratios. To produce an analytical fit, we first in-
spect the data set displayed in Fig. 10, and in particular the
non-spinning and equal mass subsets. We find that fourth or-
der polynomials in ⌘ and S produce accurate fits for the two
subsets, and we fix the linear term in ⌘ by a Taylor expansion
around the extreme mass ratio limit as in [86],

a f = 2
p

3⌘ + higher order in ⌘ and spins. (3.4)

In order to cover the whole parameter space we extend the
ansatz by terms quadratic in ⌘ and quartic in the total spin S

to

ae f f
f = f00 + S + ⌘

X

i=0,4

f1i

i!
S i

+⌘2
X

i=0,4

f2i

i!
S i + f30⌘

3 + f40⌘
4. (3.5)

After fixing coe�cients for consistency with the nonspinning
and equal mass cases, the only coe�cients left to fit are the 4
numbers ( f11, f12, f13, f14). The result is,

ae f f
f (⌘, S ) = S + 2

p
3 ⌘ � 4.399 ⌘2 + 9.397 ⌘3 � 13.181 ⌘4

+(�0.085 S + 0.102 S 2 � 1.355 S 3 � 0.868 S 4) ⌘
+(�5.837 S � 2.097 S 2 + 4.109 S 3 + 2.064 S 4) ⌘2 (3.6)

RMS errors are 6.8 ⇥ 10�3, and 2.4 ⇥ 10�3 when comparing
the fit with the equal spin subset. We also note that this fit
respects the Kerr limit, i.e., ae↵

f |  1.

FIG. 10: Final Kerr parameter from Eq. 3.6 plotted as a function of
symmetric mass ratio and total spin Ŝ . Black dots mark data points
with equal spins, grey dots unequal spins.

B. Radiated energy

The data points for radiated energy are shown in Fig. 11,
together with the e↵ective single spin fit we will now discuss.
Inspecting the plot, clearly, a polynomial in the symmetric
mass ratio and the e↵ective spin will not provide the ideal
model, and a rational function model comes to mind. Also,
as in the final spin case, clearly a reliable accurate model of
the whole parameter space would require further data points
for large spins.

It turns out that after factoring out a fit to the nonspinning
subset, the radiated energy depends only rather weakly on the
symmetric mass ratio. We find that the non-spinning radiated
energy, ENS

rad(⌘), is very well captured by a fourth order poly-
nomial, at a RMS of 3.5 ⇥ 10�5,

ENS
rad(⌘) = 0.0559745⌘+0.580951⌘2�0.960673⌘3+3.35241⌘4.

(3.7)

Husa et al 2016
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As can be seen in Fig. 10, the e↵ective spin Ŝ works reason-
ably well for the radiated energy. We model the dependence
on the spin Ŝ through a simple rational function, where the
numerator and denominator are linear in spin and quadratic
in symmetric mass ratio, with some experimentation having
gone into making a choice for which the nonlinear fitting pro-
cedure converges well, and the result has no singularities due
to vanishing denominator. The result of the fit, with a RMS
error of 4 ⇥ 10�4 is,

Erad

Mini
= ENS

rad(⌘)
1 + Ŝ

⇣
�0.00303023 � 2.00661⌘ + 7.70506⌘2

⌘

1 + Ŝ
��0.67144 � 1.47569⌘ + 7.30468⌘2�

(3.8)

FIG. 11: Radiated energy according to fit Eq. 3.8 plotted as a function
of symmetric mass ratio and total spin Ŝ . Black dots mark data points
with equal spins, grey dots unequal spins.

IV. WAVEFORM ANATOMY AND MODEL

A. Waveform anatomy

1. Amplitude

The waveform anatomy in the time domain has been stud-
ied extensively, and combined with EOB resummation tech-
niques of PN results has given rise to the family of EOB-
NR waveform models [6, 16–20]. One may distinguish
three phases without sharp boundaries: (i) a long inspiral
with slowly increasing amplitude, where the amplitude scales
as M⌘!2/3 in the low frequency limit, and the coalescence
time as !�8/3/⌘, (ii) an “extended-merger” characterised by a
rapid increase in amplitude and frequency; (iii) followed by a
damped sinusoidal ringdown. The Fourier transformation to
obtain the frequency domain waveform can in general not be
carried out analytically. In the low-frequency regime however,
the stationary phase approximation (SPA) can be used to an-
alytically obtain an approximate Fourier transform, which is
used in particular to obtain the TaylorF2 PN approximant as a
closed-form expression. Following the procedure outlined for

example in Section 3 of Ref. [27] we obtain the SPA ampli-
tude using the TaylorT4 form of the energy balance equation.
The Fourier domain amplitude, Ã22, is then given in terms of
the time domain amplitude A22 and second phase derivative
�̈ evaluated at the Fourier variable t f = (2⇡ f /m)2/3, where
m = 2 for the dominant harmonic we consider,

Ã22( f ) = A22(t f )

s
2⇡

m�̈(t f )
. (4.1)

In particular, to leading order the Fourier amplitude is,

|h̃22| = A0 f �7/6(1 + O( f 2/3)), A0 =

r
2 ⌘

3 ⇡1/3 . (4.2)

In order to better emphasize the non-trivial features of the
amplitude, we rescale our numerical data sets by the factor
f 7/6/A0, to normalize all amplitudes to unity at zero frequency
as shown in Fig. 8. We see a structure that is su�ciently
rich that a single analytical expression for the entire frequency
range is di�cult to achieve in terms of elementary (and thus
computationally cheap) functions. Our strategy will thus split
our description into an inspiral part, which models the wave-
form as higher order corrections to PN expressions, a merger-
ringdown part which builds upon the knowledge of the final
state, and an intermediate part which describes the frequency
regime which can not be based directly upon PN or the final
state.

Regarding the merger-ringdown, a crude time domain
model, which can be Fourier-transformed analytically, is a
sine-Exponential, which is symmetric around the peak am-
plitude:

h(t) = e2⇡(i fRDt� fdamp |t|) fRD, fdamp 2 R. (4.3)

The Fourier transform (2.4) yields a Lorentzian,

h̃(!) = �1
⇡

fdamp

( f � fRD)2 + f 2
damp

, (4.4)

which only falls o↵ as f �2 at large frequencies as expected
from Eq. (2.8), due to the fact that the original time domain
waveform h(t) is only C0 at the peak. Despite its oversim-
plification, in particular the unphysical symmetry around the
peak, and the incorrectly slow fallo↵ at high frequency, the
Lorentzian has provided a valid model for frequencies higher
than the ringdown frequency in PhenomA/B/C models. Look-
ing at Fig. 8, the expected roughly exponential drop at high
frequencies are clearly visible.

A natural extension of the Lorentzian ansatz used in the pre-
vious Phenom models, is to model the merger-ringdown am-
plitude AMR by multiplying the Lorentzian by an exponential
as

AMR

A0
= �1

(�3 fdamp)
( f � fRD)2 + ( fdamp�3)2 e��( f� fRD) . (4.5)

In order to find best fit parameters, we use Mathematica’s
NonlinearModelFit function. To achieve robust conver-
gence of the nonlinear least squares fit, we redefine

� = (�2/( fdamp�3)),

http://1406.7295
https://arxiv.org/pdf/1406.7295.pdf
https://arxiv.org/pdf/1406.7295.pdf
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• Placement (exploration in ‘q’; spins), duration
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RPhenomPv2 it is not straightforward to determine f
ref

such that the spin directions are specified at a time of
4500M before the peak amplitude. Therefore, we instead
choose f

ref

di↵erently: we minimize the mismatches by
varying f

ref

, with an initial guess of twice the initial or-
bital frequency of the NR waveform.

To transform the time domain waveforms into the
frequency domain, we first taper them using Planck
windows[65], rolling on for t 2 [t

0

, t
0

+1000M ] and rolling
o↵ for t 2 [50M, 70M ] where t

0

= �4500M is the time at
which the parameters are measured, and t=0 is the time
of peak waveform amplitude. We then pad them with
zeros and compute the frequency domain waveforms via
the fast Fourier transform (FFT). For the reference NR
waveform, we obtain 30 random samples of the direction
of gravitational wave propagation (✓,�) from a distribu-
tion uniform in cos ✓ and in �, and we uniformly sample
the polarization angle  between [0,⇡] to obtain

h
 

(t) = h
+

(t)cos(2 ) + h⇥(t)sin(2 ). (65)

For the non-reference waveform, we use the same param-
eters except we add an additional initial azimuthal rota-
tion angle �, a polarization angle  , and a time o↵set,
and we optimize over these three new parameters to yield
a minimum mismatch. Because the waveform models do
not intrinsically depend on the total mass, we first use
a flat noise curve to evaluate the overlap integrals; this
provides a raw comparison between models. We evaluate
Eq. 22 with f

min

being twice the orbital frequency of the
NR waveform at t = �3500M .

The mismatches using a flat noise curve are shown in
the top panel of Figure 17. We find that both the IM-
RPhenomPv2 (green dot-dashed curve) and SEOBNRv3
(solid curve) models have median mismatches of ⇠ 10�2

with the NR waveforms. The mismatches between our
surrogate model and the NR waveforms are given by the
“Training” (solid blue) and “Validation” (dashed pur-
ple) curves and have median mismatches of ⇠ 10�3 with
the NR waveforms; see § VIA for a discussion of train-
ing and validation errors. Finally, NR waveforms of dif-
ferent resolution have median mismatches (solid black
curve) of ⇠ 10�5. In the middle and bottom panels, we
repeat this study while restricting which coprecessing-

frame modes are used. IMRPhenomPv2 contains only
the (2,±2) modes, while SEOBNRv3 also contains the
(2,±1) modes. Obtaining larger mismatches in the top
panel when comparing against all NR modes indicates
these waveform models would benefit from additional
modes. We find that our surrogate performs roughly
an order of magnitude better than the other waveform
models in its range of validity, but still has mismatches
two orders of magnitude larger than the intrinsic resolu-
tion error of the NR waveforms. This suggests that the
surrogate could be improved with additional waveforms
and/or improved model choices. However, we also note
that neither IMRPhenomPv2 nor SEOBNRv3 have been
calibrated to precessing NR simulations.

Since a realistic noise curve will a↵ect mismatches, we

FIG. 17. Mismatches, computed using a flat noise curve,
versus the highest resolution NR waveforms. Histograms are
normalized to show the error fraction per log-mismatch, such
that the area under each curve is the same. A su�cient but
not necessary condition for a mismatch to have a negligible
e↵ect is that the signal-to-noise ratio (SNR) lies below the
limiting SNR ⇢⇤ = 1/

p

2Mismatch given on the top axis [69].
Top: All modes available to each waveform model are in-
cluded, and the NR waveforms use all `  5 modes. Middle:
All coprecessing-frame modes other than (2,±2) are set to
zero in all waveforms. Bottom: All coprecessing-frame modes
other than (2,±1) and (2,±2) are set to zero in all waveforms.
These restricted mode studies are done to compare more di-
rectly with IMRPhenomPv2 and SEOBNRv3, which retain
the coprecessing-frame modes of the middle and bottom pan-
els respectively.

also compute mismatches for total masses M between
20M� and 320M� using the advanced LIGO design sen-
sitivity [68]. In Fig. 18, the lower and upper curves for
each waveform model denote the median mismatch and
95th percentile mismatch. We note that for M < 114�,
some NR and surrogate waveforms begin at f

min

> 10Hz
and the noise-weighted inner products will not cover the
whole advanced LIGO design sensitivity band. The sur-
rogate model errors increase with total mass, indicating
a larger amount of error in the merger phase and less
error in the inspiral phase. Note that our largest system-
atic source of error, the approximate treatment of the
waveform’s dependence on the angle �

�

, is much larger
during the merger than during the inspiral, as discussed
in § IVD and plotted in Fig. 12. This error source arises
from our attempt to model a 5d parameter space with a
4d surrogate model, so it will not be relevant for a full
7d surrogate model. Even with this error, our surrogate
model performs better than the other waveform models
up to 320M� within the surrogate parameter space.

Blackman et al 2017

http://adsabs.harvard.edu/abs/2015PhRvL.115l1102B
http://adsabs.harvard.edu/abs/2017arXiv170101137O


Final remarks

• NR is being used to interpret GW data

• LSC has active NR involvement, including followup program & efforts to assess 

model systematics


• Several groups developing strategies to use NR creatively


• Search selection biases


• Burst searches


• Waveform systematics


!

• NR (+hybrids+surrogates) are valuable!

• Confront data with best solution of Einstein’s equations


• Should provide best estimates of generic binary parameters


• Valuable cross-check for model-based analysis
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Literature review I: Varma et al

• Aligned-spin hybrid match-based calculation, to estimate PE biases

• Result: Higher modes matter

• MLE estimator bias with just 22 is modest [offset >= statistical error]


• Figures illustrate it is significant, & MLE is not posterior
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(a) Ine↵ectualness (b) E↵ective bias in M

(c) E↵ective bias in ⌘
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(d) E↵ective bias in �e↵

FIG. 6: “Ine↵ectualness” (1 - FFe↵) and e↵ective parameter biases when using quadrupole mode templates against “full” hybrid
waveforms. Dashed lines correspond to the same but against quadrupole-only hybrid waveforms. Fractional biases are shown for
total mass M and symmetric mass ratio ⌘, while absolute biases are shown for e↵ective spins �e↵ . FFe↵ and e↵ective parameter
biases are obtained by averaging over all relevant orientations of the binary using Eqs. (2.3) and (2.4). The horizontal axis reports
the total mass of the binary while the mass ratio and spins are shown in the legend. The markers indicate the spin types: triangles
pointing up/down denoting binaries with aligned/anti-aligned spins and circles denoting nonspinning binaries. The horizontal
dashed black line corresponds to 1 � FF3

e↵ = 0.1. Note that most of the dashed lines in the top-left subplot lie below 10�3. We see
that as the total mass increases, the ine↵ectualness and e↵ective biases in M, ⌘ and �e↵ increase and are dominated by the e↵ects
of subdominant modes; see Sec. III for further discussion.

beyond that point. We see from Figs. 6b–6d that this trend of
larger (smaller) e↵ectualness for negative (positive) spins at
high masses (M & 100M�) is achieved at the cost of larger
(smaller) systematic biases in the estimated parameters.

We set FFe↵ � 0.965 (which corresponds to a ⇠ 10% loss in
detection volume for a fixed SNR threshold) as the benchmark
for the relative importance of non-quadrupole modes in detec-
tion. This is shown by the dashed black line in Fig. 6a. Fig. 1a
summarizes the region in the parameter space where the loss of
detectable volume (at a fixed SNR threshold) due to neglecting
non-quadrupole modes is greater than 10%. For the case of
negative spins, even at large mass ratios, we see that subdom-
inant modes are important for detection only over a range of
masses (M ⇠ 75 � 150M�). For binaries with positive and zero

spins, we anticipate that the upper limit of total mass where the
higher modes are important are above 300M�, the highest mass
that we consider in this study. Based on Fig. 1a, we expect the
quadrupole mode templates to be fully e↵ectual for detection
either when q . 4 or when M . 70M� (irrespective of spins),
considering a population of binaries distributed with isotropic
orientations. We note that the region in which subdominant
modes become important for detection is the smallest (largest)
for negative (positive) spins.

Figure 1a also shows the region in the parameter space
(marked by the green dashed line) where subdominant modes
are important for the detection of nonspinning binaries when
nonspinning quadrupole mode templates are used, obtained in
our previous study [13]. We see that the use of quadrupole

2

(a) For detection (b) For parameter estimation

FIG. 1: These plots summarize the region in the parameter space of nonprecessing black-hole binaries where contributions from
subdominant modes are important for detection (left) and parameter estimation (right). In the left panel, the shaded areas show the
regions in the parameter space where the loss of detection volume (for a fixed SNR threshold) due to neglecting subdominant
modes is larger than 10%. In the right panel, shaded areas show the regions in the parameter space where the systematic errors in
any of the estimated parameters (M, ⌘, �e↵) are larger than the expected statistical errors for a sky and orientation-averaged SNR
of 8 (corresponding to an optimal orientation SNR ' 20). The vertical axes report the total mass M of the binary while horizontal
axes report the symmetric mass ratio ⌘ (the top horizontal axes show the mass ratio q). In each plot the three solid curves
correspond to di↵erent e↵ective spin values: blue for �e↵ ⇠ 0.5, green for �e↵ ⇠ 0 and red for �e↵ ⇠ �0.5. The dashed green lines
show the same results for nonspinning binaries using a nonspinning template family from our previous work [13], these curves are
restricted to M < 200M�. The markers (triangles pointing up/down denoting binaries with aligned/anti-aligned spins and circles
denoting nonspinning binaries) indicate the data points that are used to construct the shaded regions and curves. The legend shows
the mass ratios and spins of the target signals featured in these plots. See Sec. III for a detailed discussion.

Fig. 1 summarizes the main results from this study. The
left plot shows the region in the parameter space where ne-
glecting the subdominant modes will cause an unacceptable
(more than 10%) loss in the detectable volume (appropriately
averaged over all orientations of the binary) for a fixed SNR
threshold. The right plot shows the region in the parameter
space where neglecting the subdominant modes will cause un-
acceptably large systematic bias in the parameter estimation
(i.e., systematic errors larger than the expected statistical errors
for a sky- and orientation-averaged SNR of 8). Comparing
these results with our previous study employing nonspinning
templates (dashed green curves in Fig. 1), we see that the use of
dominant mode templates with nonprecessing spins enhances
the e↵ectualness in detecting nonspinning signals containing
subdominant modes, thus reducing the region in the parame-
ter space where subdominant mode templates are required for
detection. However, this is achieved at the cost of introducing
larger systematic errors in the estimated parameters, thus in-
creasing the volume of the parameter space where subdominant
mode templates should be used in the parameter estimation.

previous study of nonspinning binaries to the case of spinning binaries
with equal component spins. Our new study covers a larger region in the
parameter space (higher mass ratios and spins) that they consider. They also
use a template family with a single e↵ective aligned spin parameter limited
to �e↵ < 0.6. As we use a template family with two aligned spin parameters,
we see better fitting factors at the cost of a larger parameter bias.

This e↵ect (better e↵ectualness at the cost of larger systematic
errors) is more pronounced in the case of binaries with spins
anti-aligned with the orbital angular momentum. Thus, sub-
dominant templates are required for detection of binaries with
anti-aligned spins only over a small region in the parameter
space; but they are required for parameter estimation over a
large region. This e↵ect is reversed in the case of aligned spins.

The rest of this paper is organized as follows: Sec. II provides
details of the methodology and figures of merit for this study.
Sec. III discusses our results including how we arrive at Fig. 1.
Finally, Sec. IV has some concluding remarks, limitations of
this work and targets for future work. Please note our notation
for the rest of this article: M refers to the total mass of the
binary, m1 and m2 refer to the component masses, �1 and �2
refer to the dimensionless spin parameters; �1,2 = S 1,2/m2

1,2
where S 1,2 are the spin angular momenta of the components.
We only consider spins aligned/anti-aligned with the orbital
angular momentum. The mass ratio is denoted by q = m1/m2
while ⌘ = m1m2/M2 denotes the symmetric mass ratio. We also
define the e↵ective spin parameters �e↵ = (m1�1+m2�2)/M and
�̃e↵ = (m1�1 � m2�2)/M. We refer to waveforms that include
contributions from sub-dominant modes (`  4, m , 0) as
“full” waveforms, and waveforms that include only quadrupole
modes (` = 2,m = ±2) as “quadrupole” waveforms. We refer
to the SNR averaged over orientation and inclination angles
as the orientation-averaged SNR, note that SNR along optimal
orientation is ⇠ 2.5 times the orientation-averaged SNR [21].

Varma and Ajith,1612.05608 
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• Orientation-dependent biases
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come equally important in terms of Feff . Furthermore,
the losses observed for � = 0 seem a good guess of those
observed for the spinning cases, particularly for the high-
est masses. We note that it would have been interesting
to study cases with spins closer to ±1 and higher mass ra-
tios. However, the only case with reasonably high spins
and mass ratio available in the SXS catalogue was the
q = 3,� = ±0.5 used here.
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FIG. 7. Systematic biases obtained for the total mass (left)
and e↵ective spin (right) for a q = 3 non-spinning system
for eaLIGO (top) and AdvLIGO (bottom) as a function of
the location of the detector on the (upper hemisphere) sky of
the source. Note that the di↵erent interaction of the modes
as a function of the angle ' generates biases to either larger
or lower values, which in general grow (in absolute value)
as ✓ does. Biases to low masses are more common due to
the higher frequency content of the signal for most values
', has to be imitated by low mass templates. Last, note that
✓ = 0 corresponds to the center of the plot while its perimeter
corresponds to ✓ = ⇡/2.

VI. PARAMETER BIAS

Due to its importance in GW data analysis, we will
express results not as a function of (q,M) but rather
consider the so called chirp mass parameter M

c

[45]
and the total mass M . Before discussing the aver-
aged systematic errors measured due to the neglection
of HM, we want to note that the intrinsic parame-
ter bias ⌅

i,0 of the SEOBNRv1-ROM model towards
our hybrids containing only the quadrupolar modes
were never larger than (|�M |(%), |�M

c

|(%), |��|) =
(2%, 2%, 0.04) for all the total mass range, except for
the (q,�) = (3,+0.5) case, for which these reached max-
imum values of (4%, 6%, 0.05)[46].

The main e↵ect of the HM is introducing large
frequencies in the detector band, thus one should expect
that the quadrupolar SEOBNRv1 waveform best match-
ing a target waveform h(⌅) with parameters ⌅ should
have a larger frequency content than that corresponding
to the quadrupolar template hB(⌅) having the intrinsic
parameters ⌅ of the target. Intuitively, this can be
achieved via introducing biases towards lower total mass
and larger positive spin. Fig.7 shows the biases in total
mass and spin obtained for all values of (✓,') (thus
averaged over  ) for a q = 3 non-spinning system for
the cases of eaLIGO and AdvLIGO. Note that ✓ = 0
corresponds to the center of the plot while its perimeter
corresponds to ✓ = ⇡/2. We see how the two di↵erent
ways of increasing the template frequency (lowering
mass and raising spin) compete along the di↵erent
(✓,'). As expected, the absolute value of the bias
grows as ✓ does. Also, the di↵erent interaction of the
modes as a function of ' generates a sort of dipolar
pattern where biases vary from positive to negative. It is
remarkable that while averaged biases shown in Fig.8 for
the systems in Fig. 7 are of (�M,��) ⇠ (�5%,�0.1)
for eaLIGO and ⇠ (�3%, 0) for AdvLIGO, biases for
particular edge-on orientations can be much larger, up
to (�M,��) ⇠ (�40%,�0.7) for the case shown for
eaLIGO and ⇠ (�20%,�0.4) for the one shown for
AdvLIGO. Note also that even though the total mass
chosen for the eaLIGO example is almost a half of that
chosen for AdvLIGO, systematic biases are much lower
for the latter case due to the lower f0 of AdvLIGO,
which makes it much more sensitive to the long PN
inspiral dominated by the quadrupolar modes.
Fig. 8 shows the averaged parameter bias over the
observable volume, given by Eq.(9), for the studied
targets. As a general trend, neglection of HM causes
observation-averaged biases towards lower (�, M , M

c

)
which increase as M and q do. As expected, biases are
much larger for iLIGO and eaLIGO than for Adv.LIGO.
In particular, note that the lower f0 of Adv.LIGO allows
for an excellent recovery of M

c

for most of the M range.
This is due to the larger weight of the PN inspiral in
the detector band. Regarding spinning cases, systematic
biases are larger for negative spin cases than for positive
spin ones. For q = 1 we only show the eaLIGO cases,
which were the only ones having systematic biases
comparable to those of the other cases.

We now compare the observation-averaged biases to
the statistical uncertainty we expect for each detector
via computing the minimum SNR ⇢0 at which PE would
be dominated by the systematic biases. We note that,
unlike the volume loss R

i

, the quantity ⇢0 =
p
1/2✏ is

extremely sensitive to tiny variations in the parameters
recovered by the Nelder-Mead algorithm, which has the
risk of settling in a local maximum. In particular, for an
error �✏ in the estimation of ✏, one gets a variation for ⇢0
of�⇢0 ⇠ ✏�3/2�✏. This will specially a↵ect regions of the
parameter space where systematic biases are lower and

J. Calderon-Bustillo et al 1511.02060 
(early aLIGO) 
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FIG. 1. Comparison of source frame component masses and aligned spin combinations for an aligned NR mock signal (SXS:BBH:0307) with
masses and spins consistent with GW150914. The signal is injected into zero noise using the fiducial inclination, ◆ = 163�, and polarization
angle  = 82�. The non-precessing IMRPhenom and EOBNR models are used for recovery. The left panel shows credible regions for recovery
of the component masses, whereas the right panel shows spin recovery. As in [2] we combine the posterior samples of both models with
equal weight, in e↵ect marginalizing over our choice of waveform model. The resulting posterior is shown in the two-dimensional plot as the
contours of the 50% and 90% credible regions plotted over a color-coded PDF. Dashed lines in the one-dimensional plots show 90% credible
intervals of the individual and combined posteriors. The injected parameter values are shown as red dot-dashed lines and a red asterisk. Both
models recover the correct masses and e↵ective spin �e↵ within the 90% credible regions, while the anti-symmetric spin combination is not
measured well; the peak in the EOBNR PDF around the correct value is a spurious e↵ect (see text).
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FIG. 2. Comparison of component masses for a precessing NR
mock signal (CFUIB0029) with masses and spins consistent with
GW150914. The mock signal is injected in zero noise using the fidu-
cial inclination, ◆ = 163�, and polarization angle  = 82�. The pre-
cessing IMRPhenom and non-precessing EOBNR models are used
for recovery.

Figs. 2 and 3 summarize the parameter recovery for this injec-
tion. We find that the true parameter values of the NR signal
(red asterisks) lie within the 50% credible regions for compo-
nent masses and e↵ective spins indicating unbiased parameter
recovery for this injection with either waveform model. For
the source frame masses we find msource

1 = 38.3+6.4±0.7
�4.9±0.3 M�

and msource
2 = 28.2+5.3±0.3

�6.2±0.4 M�, with systematic errors an order
of magnitude smaller than statistical errors. For the e↵ective
aligned spin we have �e↵ = �0.08+0.15±0.02

�0.19±0.06. Here systematic
errors are a factor four smaller than statistical errors. The ab-
solute bias between the true parameter values and the overall
medians in the source frame masses is ⇡ 2M� and ⇡ 0.05 in
�e↵ . The spin directions as shown in the right panel of Fig. 3
are not constrained. No information on the e↵ective preces-
sion spin �p is recovered, despite the signal having apprecia-
ble �p. Instead, we e↵ectively recover the prior on �p as can
be seen in the left panel of Fig. 3. This may be attributed
to the following reasons: Firstly, the fiducial inclination only
gives rise to weak precession-induced modulations in the sig-
nal, and secondly the shortness of the signal only allows for at
most one modulation cycle in the aLIGO sensitivity window.
Hence we find that for the fiducial parameters, parameter re-
covery is not biased in the sense that the injected values are
always well inside their posterior confidence regions.

Parameter estimates were obtained for several additional
NR signals in the vicinity of GW150914 with the precessing
IMRPhenom model for fiducial and also edge-on inclinations

11

FIG. 4. Inclination dependence of parameter recovery. Two NR waveforms primarily di↵ering in �p (SXS:BBH:0308 in left column;
CFUIB0020 in right column) are injected with di↵erent ✓JN as given on the ordinate axes. Shown on the abscissa axes are 90% credible
intervals (blue / gray bands) and medians (asterisks / circles) for these precessing NR signals recovered with the precessing IMRPhenom
model. Injected parameter values are shown as red dash-dotted lines, except for the bottom two panels where the injected values depend on  
and are shown in blue (dotted) and gray (dash-dotted). Shown from top to bottom are chirp massM, mass-ratio q, e↵ective precession spin
�p, the angle ✓JN and luminosity distance DL. The analysis is repeated for two choices of detector polarization angle  , with the one shown in
grey representing a detector orientation approximately canceling h+.
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FIG. 6. Results for precessing NR injections (SXS:BBH:0308) with
face-on or edge-on inclination (✓JN = 6� and 84�, respectively) and
either including higher harmonics up to ` = 8 (compare with Fig. 4)
or just the ` = 2 modes in the mock signal. All injections are per-
formed at fiducial polarization angle  = 82�. The precessing IMR-
Phenom model is used as the template waveform. We show two-
dimensional 90% credible regions for component masses and e↵ec-
tive spins.

GW150914. The waveforms in this family vary in their orbital
eccentricity, cf. Table II.

There is no unambiguous GR definition of eccentricity, so
we calculate an eccentricity estimator [128] from the instan-
taneous frequency of the GW using a Newtonian model. We
assume that the GW frequency is twice the orbital frequency
of a Newtonian orbit, but fit for additional degrees of freedom
to model GR e↵ects such as inspiral and precession of the or-
bit.

We estimate the eccentricity by fitting a short portion of the
instantaneous GW frequency, !GW, to the form

!GW = 2n(t)
p

1 � e2

⇥
1 � e cos (u(t))

⇤2 (16)

n(t) = n0 [1 + a(t � tref)] (17)
u(t) = 2⇡(t � tref � t0)/P (18)

This is twice the angular frequency expected from a Newto-
nian eccentric orbit, with the slow inspiral modeled as a linear

variation of the parameter n with time. We do not enforce the
Newtonian relation n = 2⇡/P, since it is broken in the GR
case by pericentre advance. u(t) would properly be obtained
using the Kepler equation. However, we do not find this nec-
essary, and have e↵ectively expanded it in small e. This ex-
pansion leads to good fits for the small values of e that we are
simulating. It is necessary to include the nonlinear terms in e
for the large-scale behavior of !GW in order to get a good fit
when e & 0.1. We find that using the coordinates of the hori-
zon centroid, instead of the GW frequency, leads to qualitative
disagreement with this simple Newtonian model, whereas the
GW frequency matches very well.

Unlike the spin magnitudes and mass ratio, the eccentricity
evolves significantly in the 14 orbits covered by the eccen-
tric simulations, so assigning a single number to each config-
uration requires selecting a specific point in the evolution at
which to quote the eccentricity.

We quote the eccentricity at a reference time tref at which
the mean GW frequency 2n is 23.8 Hz assuming the source
mass is 74 M�. This is 2Mn = 0.0545424 in geometric units.

We obtain eccentricities up to e = 0.13 at the reference
time; see Table II. Even “circular” NR waveforms have a small
eccentricity, as it is not possible to reduce this to zero. For
example, the smallest eccentricity in the family of waveforms
considered here is ⇠ 10�4, not 0.

We inject the above eccentric aligned-spin NR waveforms
into zero noise and recover with the quasi-circular non-
precessing EOBNR templates. Fig. 7 shows posteriors for the
chirp mass, mass-ratio and aligned spin on the larger BH as
a function of eccentricity. We find that eccentricities smaller
than ⇠ 0.05 in the injected NR waveform (with the eccentric-
ity definition introduced above) do not strongly a↵ect param-
eter recovery and lead to results comparable to quasi-circular
NR waveforms. Biases occur for larger eccentricity. The right
panel of Fig. 7 shows how the log likelihood drops sharply if
the eccentricity is above 0.05 and the disagreement between
the eccentric signal and quasi-circular template increases.

E. E↵ect of detector noise

So far in this study we have focussed on NR injections in
zero noise using only an estimated PSD from the detectors in
order to assess waveform systematics. The results obtained
with this method are missing two potentially important ef-
fects:

� While we obtain the posterior probability density func-
tion e↵ectively averaged over many noise realizations,
the zero-noise method does not assess how noise real-
izations with typical deviations from the average will
a↵ect the posteriors.

� The usual interpretation of our credible intervals relies
on the assumption that both our signal and noise model
are an appropriate description of the data. The previ-
ous sections addressed the signal model, but the zero-
noise method does not take into account the properties
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FIG. 9. Posterior distributions of the mass estimation. All values are presented as fractional errors, i.e., (x � xtrue)/xtrue. The left column
displays m

2

vs. m

1

and the right column displays M
obs

vs. M

obs

. The rows are of increasing M

obs

from M

obs

= 100M� at the top to
M

obs

= 300M� at the bottom. For all systems, q = 4 (⌘ = 0.16) and ✓

JN

= ⇡/3. The asterisks indicate the point with highest logL and
the contours are at 50%, 90%, and 95% credible levels (inside to outside). Blue contours use EOBNRv2HM as a waveform template while red
contours use EOBNRv2, which only includes the leading (2, 2) mode.

D. Effect of priors

So far, in all of the analysis runs, we have used a very large
prior on the component masses, which was flat in (m1,m2)

space. However, one could argue for other reasonable prior
distributions on the masses. One such alternative is to use a
prior that is flat in log(Mobs). The quantity log(Mobs) is
used because Mobs is a scaling factor for the waveform am-
plitude and log(Mobs) is the so-called Jeffreys prior. Addi-
tionally, we employ a prior that is flat in ⌘ for the second mass
parameter.

We ran multiple analyses with this second prior option,
which is flat in (log(Mobs), ⌘) and find that even at an SNR of
12 the strength of the signal is sufficient to render the different
prior distribution a minimal factor. This can be seen in Fig.8,

where we show the one-dimensional posteriors from a single
analysis. More specifically, we display in dotted lines the 1D
posteriors of a run with EOBNRv2HM waveform model that
uses the alternative prior, to be compared with the solid lines
from the run with the original prior. The lines are nearly iden-
tical, with differences much smaller than those from using the
EOBNRv2 waveform; these differences from the alternative
prior will continue to decrease as the SNR is increased.

E. Comparison to previous parameter-estimation work with
inspiral-merger-ringdown waveforms

In an earlier work, Ajith and Bose [30] used inspiral-
merger-ringdown phenomenological waveform models

12
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the contours are at 50%, 90%, and 95% credible levels (inside to outside). Blue contours use EOBNRv2HM as a waveform template while red
contours use EOBNRv2, which only includes the leading (2, 2) mode.

D. Effect of priors

So far, in all of the analysis runs, we have used a very large
prior on the component masses, which was flat in (m1,m2)

space. However, one could argue for other reasonable prior
distributions on the masses. One such alternative is to use a
prior that is flat in log(Mobs). The quantity log(Mobs) is
used because Mobs is a scaling factor for the waveform am-
plitude and log(Mobs) is the so-called Jeffreys prior. Addi-
tionally, we employ a prior that is flat in ⌘ for the second mass
parameter.

We ran multiple analyses with this second prior option,
which is flat in (log(Mobs), ⌘) and find that even at an SNR of
12 the strength of the signal is sufficient to render the different
prior distribution a minimal factor. This can be seen in Fig.8,

where we show the one-dimensional posteriors from a single
analysis. More specifically, we display in dotted lines the 1D
posteriors of a run with EOBNRv2HM waveform model that
uses the alternative prior, to be compared with the solid lines
from the run with the original prior. The lines are nearly iden-
tical, with differences much smaller than those from using the
EOBNRv2 waveform; these differences from the alternative
prior will continue to decrease as the SNR is increased.

E. Comparison to previous parameter-estimation work with
inspiral-merger-ringdown waveforms

In an earlier work, Ajith and Bose [30] used inspiral-
merger-ringdown phenomenological waveform models

Graff et al 2015 
q=4, SNR=12, zero spinn

��� ��� ��� ��� ���
���

���

���

���

���

���

�O’Shaughnessy, Blackman, Field 2017 (1701.01137) 
M=150, q=2, aLIGO SNR=25, zero spin

No higher modes

With higher modes

ILE+ EOBNRv2HM [ Reference ]  
ILE + ROM on grid 
ILE+ROM Monte Carlo
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• Large mismatches with SEOBNRv3
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FIG. 4. Sky- and polarization-averaged unfaithfulness (Eq. (9)) between NR and EOBNR waveforms of 70 precessing BBHs in Advanced
LIGO. Left panels: unfaithfulness as a function of the total mass of the binary for three possible inclinations ◆ = 0,⇡/3,⇡/2. Right pan-
els: histograms of the maximum unfaithfulness over the total mass range 10M�  M  200M�. The dashed line corresponds to 3%
unfaithfulness.

` = 2. The polarizations are then combined into the observed
strains according to

s = F+( 
s

, ✓
s

,�
s

)s+ +F⇥( 
s

, ✓
s

,�
s

)s⇥ , (7)
h = F+( 

h
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h

,�
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)h++F⇥( 
h

, ✓
h

,�
h

)h⇥ , (8)

where F+,⇥ are the antenna pattern functions (specific to the
shape of the GW detector),  

s,h

are the polarization angles,
and ✓

s,h

and �
s,h

are coordinates of the sky location of the
source in the inertial frame of the observer. We compute the
min-max and max-max overlaps of s and h (see Appendix B)
by maximizing over ( 

h

, ✓
h

,�
h

) while minimizing or max-
imizing over ( 

s

, ✓
s

,�
s

), respectively. Min-max and max-

max give the worst and best overlap, respectively, across all
possible sky locations and polarizations. This motivates us to
average the overlaps over ( 

s

, ✓
s

,�
s

), rather than minimiz-
ing or maximizing over them thus obtaining a quantity (the
average-max overlap) that is bound by the min-max and max-
max. Interestingly, we find that the average-max overlaps are
always closer to the max-max overlaps. We want to stress
that here we do not intend to assess systematic biases in the
measurement of the extrinsic BBH parameters over which we
maximize: this will be the focus of future work. We define the
sky- and polarization-averaged faithfulness as

F = max
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where max

t

c

is a shorthand for the relative-t
c

maximization.
All inner products are computed with the noise curve of Ad-
vanced LIGO in the zero-detuned high-power configuration
that is expected for 2020 [20, 21]. Finally, the sky- and
polarization-averaged unfaithfulness is defined as 1 � F .

The emission of GWs is strongest from BBHs that are face-
on/off (i.e., ◆ = 0,⇡), so those are the systems that are most
likely to be observed (a prime example being GW150914).
On the other hand, the effect of subdominant modes is sup-
pressed in face-on/off binaries while it is emphasized by
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Bonus: Event loss from lacking higher modes
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