
Visualizing the Inner Structure of

N-Body Data using Skeletonization

Edward Dale
Department of Computer Science
Rochester Institute of Technology

Rochester, NY, USA
scompt@scompt.com

Hans-Peter Bischof
Department of Computer Science
Rochester Institute of Technology

Rochester, NY, USA
hpb@cs.rit.edu

Abstract N-body simulations solve the n-body

problem numerically and determine the trajecto-

ries of the n point masses. The result of these cal-

culations is a huge amount of data detailing the

positions and other properties of each body such

as mass and velocity. To effectively draw conclu-

sions from these data, one must employ scientific

visualization to create images and movies that il-

lustrate the structure of the data. We show that

the computer animation technique of skeletoniza-

tion can be applied to the volume data produced

by n-body simulations in order to visualize the in-

ner structure of the data. This novel application

is compared to traditional rendering methods in

terms of its ability to show this structure.

Keywords: N-body, Skeletonization, Spiegel, Volume ,

Visualization

1 Introduction

The increasing speed of computers means that sci-
entists are able to run situations that were previ-
ously impossible, producing torrents of data that
need to be somehow analyzed to draw a conclusion.
How to distill this large amount of data down to a
form that can be digested is potentially a problem
just as difficult as the initial simulation, but visu-
alization is a useful tool.

N-body simulations result in a dataset on the
order of tens of gigabytes. Examining these data
without a visual representation is very difficult. To
extract some kind of meaning, we borrow the con-
cept of skeletonization from the field of computer
animation and apply it to scientific visualization.
Skeletonization (also known as line thinning) is a
technique that, when applied to a dataset, yields a
“thinner remnant that largely preserves the extent

and connectivity of the original region” [1]. It has
the immediate benefit of reducing the amount of
data being processed. We show it can also be used
as an effective visualization for n-body data. This
technique is compared to more traditional point-
and volume-based rendering.

The rest of this paper is organized as follows. In
Section 2, a background summary of the concepts
and subject matter being used is presented. Section
3 explains the data structures used and algorithm
implemented. Results, including pictures, are pre-
sented in Section 4. Finally, some conclusions are
made about the viability of skeletonization as a vi-
sualization technique and what future work is pos-
sible.

2 Background

2.1 N-Body Simulations

The n-body problem is the problem of finding the
“trajectories in time of N point masses whose only
interaction is Newtonian gravitation” [2]. This is
a very computationally expensive problem (O(n2))
as each body exerts a force on every other body
according to Newton’s law of gravity. A closed so-
lution only exists for the n = 2 case. For all n > 2,
numerical approximations must be used. Typically,
an n-body simulation is used to model another pro-
cess. We have visualized simulations of models of
the evolution of galaxies consisting of hundreds of
thousands of stars, molecular clouds, gas, and dark
matter over time. The results of these simulations
and the input to the algorithms described below is
a sequence of files containing the properties of each
body at each timestep.



2.2 Skeletonization

2.2.1 Introduction

Skeletons are a useful and intuitive structure to
work with because they capture the essential topol-
ogy of an object. The extraction and manipulation
of skeletons from volume data is well-researched
and there are a number of techniques, however, we
will be focussing on the ones presented in [3].

Gagvani et al. define two types of skeleton struc-
tures: skeletal voxels and the skeleton tree. Skele-
tal voxels are the set of voxels that form the medial
surface (centered with relation to the boundaries)
of the volume. The skeleton tree is a connected
tree structure consisting of the skeletal voxels and
connecting line segments. Figure 1 shows an ob-
ject and it’s skeletal voxel and skeleton tree rep-
resentations. Notice that the main components of
it’s structure are preserved: the four corners and
lengthened body.

Figure 1: A hexahedron and it’s associated skeletal
voxels and skeleton tree.

2.2.2 Algorithm

Extracting the skeletal voxels from a volume is done
by thinning that volume until a desired thinness is
reached. This thinness is the thinning parameter
tp. The method described in [3] uses a weighted dis-
tance transform that eliminates the need for costly
floating point operations. The algorithm proceeds
by propagating boundary distances inward until
there are no new voxels. The distance transform
of a voxel q needs to be within tp of the mean of
all 26 neighbors of q in order to be a skeletal voxel.
For low values of tp, the distance transform of a
voxel need be only a little higher than it’s neighbor
to be a skeletal voxel, yielding a large set of skeletal
voxels. A higher value creates a much smaller set
[1].

To create the skeleton tree, a graph theory ap-
proach is taken. A completely connected graph is
created with the skeletal voxels as the vertices. The
edge weights are a linear combination of spatial dis-
tance between two voxels and the difference in their
distance transform values as shown in Equation 1.
The α adds yet another parameter to the process.

(a) Level 0 (b) Level 1 (c) Level 2

Figure 2: Octree decompositions of a cube.

The minimum spanning tree of this graph is the
skeleton tree of the original volume.

EWV 1↔V 2 = α ∗DISTV 1↔V 2 (1)
+ (1− α) ∗ ‖(DTV 1 −DTV 2)‖
, 0 ≤ α ≤ 1.

2.3 Spiegel Visualization Framework

Spiegel is a Java visualization framework for large-
and small-scale systems that uses a pipeline ap-
proach similar to that of Unix to create a vi-
sualization. Functional blocks are assembled in
the pipeline using a graphical programming en-
vironment. A visualization problem is solved by
implementing new and reusing existing blocks to
solve individual tasks [4]. The data structures and
algorithms described below were implemented in
Spiegel by using and extending the constructs it
provides.

3 Implementation

3.1 Data Structure

When dealing with a three-dimensional space con-
taining particles numbering in the hundreds of
thousands, the data structure used needs to be suf-
ficiently advanced to mask the inherent complexity.
The ideal data structure divides the input space
into manageable, regular subspaces. Such a sub-
division of a space can be achieved with a region
octree such as the one displayed in Figure 2.

A space can be decomposed into infinitely many
cubes, so a criterion for decomposition must be es-
tablished. Different criteria yield octrees with dif-
ferent behaviors, which may be better suited to
a particular use. The octree implemented for the
skeletonization algorithm below is the MX octree.



The MX (MatriX) octree [5] divides a space into
regions of constant size. When inserting a point
into an MX octree, the space will be recursively
decomposed until the desired size is met. In a tree
representation of an MX octree, the tree will have
a set height and every point in the space will exist
in the lowest level.

The initial step of the algorithm is to insert all
of n-bodies into an octree, thereby decomposing the
space and voxelizing the data. Some positional er-
ror can be introduced at this point, but as discussed
in [6], it is negligible.

3.2 Skeletonization

The skeletonization algorithm described in Section
2.2 had to be modified slightly because of the char-
acteristics of the volume data being processed. The
volume data that the algorithm was designed for
is a space containing a continuous block of ob-
ject voxels, the rest of which are background vox-
els (e.g. Figure 1). However, because of the scat-
teredness of n-body data and the initial voxeliza-
tion step, the data will be regular, but there won’t
necessarily be a single border between object and
background voxels.

The determination of whether a voxel is part of
the object or not is critical as too many or too few
initial voxels will make accurate skeleton extrac-
tion impossible. Two more parameters were added
to tune this step. The first parameter controls the
height, and thereby the resolution, of the input oc-
tree to the skeletonization algorithm. The second
is the connectedness that a voxel must have to be
an object voxel.

3.3 Skeleton Visualization

The output of the skeletonization algorithm is ei-
ther a set of points (the skeletal voxels) or a set of
line segments (the skeleton tree). To visualize ei-
ther of the representations, they were simply sent
to the video card as primitives to be rendered.

4 Results

4.1 Rendering Method Comparison

Figure 3 shows two different existing rendering
methods applied to the gas particles of an isolated
spiral galaxy compared with the two skeleton vi-
sualizations. Figure 3a renders each gas particle
as a point. Figure 3b voxelizes the gas particles

(a) Point render-
ing

(b) Volume splat-
ting

(c) Volume splat-
ting overlaid with
skeletal voxels

(d) Skeletal voxels (e) Skeleton tree (f) Volume splat-
ting overlaid with
skeleton tree

Figure 3: Different rendering techniques applied to
gas particles.

and then renders the volume using volume splat-
ting. Figures 3d and 3e show the skeletal voxels
and skeleton tree rendered as points and line seg-
ments respectively.

In the first two figures, a structure can be ob-
served, which should be present in the skeleton
representations. By overlaying the skeletons on
the volume splatting representation (Figures 3c and
3f), the structure can be visually verified as being
present.

Having shown that the skeleton visualizations
capture the structure of the data, the advantages
and disadvantages can be discussed. The two skele-
ton methods have the benefit of completely elimi-
nating noise outside of the main body of the data.
However, they both also lose some of the structure
of the data, in particular the absolute center and
the top of the data. The skeletal voxels do not pro-
vide a very useful visualization of the data unless
presented with some other structure (e.g. skeleton
tree or splatted volume).

4.2 Skeletonization Thinness
Parameter

Sometimes the skeletonization parameters can hide
complex features. In Figure 4, the resulting two
arms of two colliding galaxies can be revealed or
hidden, depending on the value of the thinness pa-
rameter chosen. This highlights the highly data-
dependent nature of the skeletonization algorithm.



(a) tp = 2.0 (b) tp = 1.0

Figure 4: The thinness parameter tp can hide com-
plex features.

(a) t = 605, 610 (b) t = 790, 795 (c) t = 1070, 1075

Figure 5: Pairwise consecutive skeleton trees illus-
trating “jumpiness” between timesteps.

4.3 Skeleton Tree Artifacts

The changing positions of the stars leads to very
noticeable artifacts in the skeleton tree when exam-
ined over time. At any one timestep, the skeleton
tree looks like a reasonable approximation of the
structure of the galaxy, as seen in Figure 3. Over
time, though, the skeleton’s structure can change
greatly enough that a “jumpiness” effect appears
when viewed as an animation. Pairs of skeleton
trees at consecutive timesteps can be seen in Fig-
ure 5. Note the changes to the line segments in the
boxes between timesteps.

4.4 Skeleton Tree α Parameter

The α parameter determines the contribution of
each of euclidean distance and distance transform
to the graph from which the skeleton tree is gen-
erated. An α value close to 1 means the skeleton
is generated based more upon the distance between
two particles. This can be seen in Figure 6a. As α
decreases, the skeleton becomes based more upon
the difference in distance transform between two
particles. This has the effect that particles from
different sides of the dataset can become connected,
a feature that can be seen in Figure 6d and which

(a) α = 1.00 (b) α = 0.75

(c) α = 0.50 (d) α = 0.25

Figure 6: Effects of α parameter on skeleton tree.

(a) t = 0 (b) t = 100 (c) t = 300

Figure 7: Skeleton trees of colliding galaxies.

is generally undesirable because particles close to
each other are more likely to be related.

4.5 Skeleton Trees of Colliding
Galaxies

The skeletonization algorithm generates a poten-
tially undesirable artifact when the data is divided
into more than one physical group, such as the
case of two galaxies before collision. The skeleton
tree generated from this data contains a skeleton
for each galaxy and an undesirable line connecting
them as seen in Figures 7a and 7c. For the time
steps where the galaxies are joined, as in Figure 7b,
the line is no longer conspicuous and need not be
removed.

5 Discussion and Future Work

We have successfully shown that skeletonization is a
valid technique for displaying the inner structure of
n-body data. This success is, however, only limited
to skeleton trees; skeletal voxels do not appear to
be a useful visualization technique. Once the par-
ticles become disperse enough, the skeletal voxel
representation is too sparse to derive any meaning



visually. Some structure needs to be placed over
these voxels, usually in the form of the skeleton
tree. The skeletal voxels could also be used as in-
put to another algorithm.

At discrete points in time, the skeleton tree is
able to show a reasonable approximate of the struc-
ture of the data, as verified by point and volume
rendering. However, significant artifacts emerge
when the skeleton tree is animated over time. One
solution would be to incorporate the skeleton of
the previous timestep into the skeletonization al-
gorithm using some form of feature tracking, as
mentioned in [1]. Another possible solution is to
create a spline-type skeleton representation that is
less sensitive to changes. This runs the risk of los-
ing touch with the actual structure of the data, but
has other benefits such as smooth automatic nav-
igation, as also mentioned in [1]. Smooth naviga-
tion would be useful to generating an animation
that “tours” the interesting structural pieces of the
n-body data over time.

The determination of the skeletonization param-
eters is currently a trial-and-error process. Adding
some more intelligence to the algorithm to al-
low it to determine the correct parameters would
make the results more repeatable across different
datasets.

In the case of multiple disjoin structures in the
data, the algorithm should detect the situation and
create multiple skeletons accordingly.

Moreover, the skeleton tree has only been shown
to be useful when looking at the position of parti-
cles. No attempt was made to skeletonize based on
other particle attributes.

References

[1] N. Gagvani and D. Silver. Parameter con-
trolled skeletonization of three dimensional ob-
jects, 1997.

[2] Jean Kovalevsky. Introduction to celestial me-
chanics, volume 7 of Astrophysics and space sci-
ence library. Springer-Verlag, New York, 1967.
Translated by Express Translation Service; 25
cm; Bibliography: p. [127]; Translation of In-
troduction la mecanique celeste.

[3] Nikhil Gagvani, D. Kenchammana-Hosekote,
and D. Silver. Volume animation using the
skeleton tree. In VVS ’98: Proceedings of the
1998 IEEE symposium on Volume visualization,
pages 47–53, New York, NY, USA, 1998. ACM
Press.

[4] Hans-Peter Bischof, Edward Dale, and Tim Pe-
terson. Spiegel - a visualization framework for
large and small scale systems. In MSV ’06:
Proceedings of the 2006 International Confer-
ence of Modeling Simulation and Visualization
Methods, pages 199–205, Las Vegas, USA, 2006.
MSV’06/ISBN #:1-60132-010-8/CSREA.

[5] Hanan Samet. Applications of spatial data
structures: Computer graphics, image process-
ing, and GIS. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1990.

[6] Edward Dale. Visualizing the inner structure
of n-body data using splatting and skeletoniza-
tion. Master’s thesis, Rochester Institute of
Technology, June 2006.


