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We perform full numerical simulations of black-hole binaries with mass ratios 100:1. Our technique
for evolving such extreme mass ratios is based on the moving puncture approach with a new gauge
condition and an optimal choice of the mesh refinement (plus large computational resources). We
achieve a convergent set of results for simulations starting with a small nonspinning black hole near
the ISCO that then performs over two orbits before plunging into the one hundred times more
massive black hole. We compute the gravitational energy and momenta radiated as well as the final
remnant parameters and compare those quantities with the corresponding perturbative estimates.
The results show a close agreement. We briefly discuss the relevance of this simulations for advanced
LIGO and LISA observers, and self-force computations.

PACS numbers: 04.25.dg, 04.30.Db, 04.25.Nx, 04.70.Bw

Introduction: The orbital evolution and computation of
gravitational radiation from black hole binaries (BHB) in
the small-mass-ratio limit remains one of the most chal-
lenging problems in General Relativity. This was rec-
ognized early on by Regge and Wheeler over fifty years
ago [1]. Zerilli then completed the formulation of the
first order perturbations around a Schwarzschild black
hole in 1970 [2]. Three years later, Teukolsky [3] pro-
vided a new formalism to study perturbations around
Kerr black holes. In order to take into account the de-
cay of the small black hole orbit due to the emission of
gravitational radiation, second order effects have to be
included in those computations. This problem turned to
be very challenging, and only since 1996 [4, 5] has there
been a consistent formalism for the “self-force” correc-
tions to the background geodesic motion of a small BH
orbiting around a larger one. The explicit implemen-
tation of such formalism into a computational scheme
remains challenging, although recent progress along this
line is encouraging [6].

The dramatic breakthroughs in the numerical tech-
niques to evolve BHBs [7–9] transformed the field of
Numerical Relativity (NR) and we are now in position
to evolve binary systems in an intermediate mass ra-
tio regime. Two years ago the merger of spinning [10]
binaries bearing a mass ratio q = m1/m2 = 1/8 and
nonspinning binaries[11] with q = 1/10 were published.
More recently, detailed long term evolutions of BHBs
with q = 1/10 and q = 1/15 were studied and validated
against perturbation theory [12, 13]. In this letter we
present the first full numerical results of the merger of
extreme mass ratio BHBs. As a case study, we evolve a
nonspinning BHB with mass ratio q = 1/100 for over two
orbits prior to merger, and resolve the entire waveform
for three grid resolutions, proving numerical convergence

TABLE I: Initial data parameters. The punctures are located
on the x-axis at positions x1 and x2, with puncture mass
parameters (not horizons masses)m1 andm2, and momentum
±~p. The punctures have zero spin.

x1 4.952562636 px -0.00001026521884
x2 -0.04743736368 py 0.00672262416584
m1 0.00868947461701704882 MADM 1.00000000005
m2 0.98961921419277897684 q 0.01000004

of the results. The success of our approach is based on
an enhancement of the moving puncture numerical tech-
niques by adapting the gauge and grid structure for the
small mass ratio limit, and the use of massive computa-
tional resources.

The techniques described in this letter can used in the
spinning BHB case and for even smaller mass ratio inspi-
rals. This has important consequences for astrophysics
and gravitational wave observatories as advanced LIGO
and LISA. Supermassive black hole collision at cosmo-
logical scales are most likely to occur in the mass ratio
range 1:10 - 1:100 [14] and be observed by LISA [15].
While collision of intermediate mass BHs and solar mass
BHs will lie in the Advanced LIGO sensitivity band [16].

Fully Nonlinear Numerical Simulations: In Table I we
give the initial data parameters for our q = 1/100 BHB
simulations. We evolved this BHB data-set using the
LazEv [17] implementation of the moving puncture ap-
proach [8, 9]. Our code used the Cactus toolkit [18] and
the Carpet [19] mesh refinement driver to provide a ‘mov-
ing boxes’ style mesh refinement.

We obtain accurate, convergent waveforms and horizon
parameters by evolving this system in conjunction with
a modified 1+log lapse and a modified Gamma-driver
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shift condition [8, 20], and an initial lapse α(t = 0) =
2/(1 + ψ4

BL). The lapse and shift are evolved with

(∂t − βi∂i)α = −2αK, (1)
∂tβ

a = (3/4)Γ̃a − η(xa, t)βa, (2)

where different functional dependences for η(xa, t) have
been proposed in [17, 21–25]. Here we use a modification
of the form proposed in [22],

η(xa, t) = R0

√
∂iW∂jWγ̃ij

(1−W a)b
, (3)

where we chose R0 = 1.31. The above gauge condition
is inspired by, but differs from Ref. [22] between the BHs
and in the outer zones when a 6= 1 and b 6= 2.Once
the conformal factor settles down to its asymptotic ψ =
C/
√
r + O(1) form near the puncture, η will have the

form η = (R0/C
2)(1 + b(r/C2)a) near the puncture and

η = R0r
b−2M/(aM)b as r → ∞. In practice we used

a = 2 and b = 2, which reduces η by a factor of 4 at in-
finity when compared to the original version of this gauge
proposed by [22]. We note that if we set b = 1 then η
will have a 1/r falloff at r =∞ as suggested by [24].

According to Chandrasekhar [26, p160] the even/odd
parity effective potentials of a Schwarzschild black hole
can be written as

V ±` = ±6M
df

dr∗
+ (6M)2 f2 + 4λ(λ+ 1) f, (4)

where

f =
(r − 2M)

2r2(λr + 3M)
, λ =

1
2
(`+ 2)(`− 1). (5)

Note that both potentials are very close to each other,
hence we consider for guiding our grid structure (in
isotropic coordinates R)

d(V +
` + V −` )
dR

, r = R

(
1 +

M

2R

)2

. (6)

which for ` = 2 and M = 1 take the explicit form

d(V + + V −)
dR

∣∣∣∣
`=2,M=1

= (7)

−384
R (2R− 1)

(
16R4 − 4R3 − 60R2 −R+ 1

)
(2R+ 1)9 (4R2 + 10R+ 1)3

×(
64R6 + 288R5 + 480R4 + 256R3 + 120R2 + 18R+ 1

)
.

This function has zeros at R/M = 0.0, 0.1207998431 in-
side the horizon and R/M = 0.5, 2.069539112, where we
ideally would like to locate the boundaries of the refine-
ment levels since there is the least change. In particular,
since we do not want to over-resolve the interior, this
suggests that the crucial region we should numerically

resolve lies between the horizon and nearly for times its
radius in quasi-isotropic coordinates.

In Ref. [13] we provide an alternative method of extrap-
olation of waveforms based on a perturbative propagation
of the asymptotic form of ψ4 at large distances from the
sources leading to the following simple expression

lim
r→∞

[r ψ`m
4 (r, t)] = (8)[

r ψ`m
4 (r, t)− λ

∫ t

0

dt ψ`m
4 (r, t)

]
r=rObs

+O(r−2
Obs),

where rObs is the approximate areal radius of the sphere
This formula is applicable for rObs

>∼ 100M .
Note that it is also important to remove the low fre-

quency components in ψ4 (since it is inside an integral).

Results and Analysis: Our simulation used 15 levels of re-
finement (around the smaller components), with central
resolutions as high as M/7077, and 9 levels of refinement
around the larger component. The outer boundaries were
located at 400M and the resolution in the boundary zone
was h = 2.3148M for our finest resolution run. The BHB
performs ∼ 2 orbits prior to merger (as seen by the for-
mation of a common apparent horizon (CAH)), which
occurs roughly 160M after the start of the simulation.

Table II shows the results of evolution. We note that
the we find that the smaller BH mass is conserved to
within 0.23% during the inspiral and plunge phases, while
the mass of the larger BH is conserved to within 0.003%.
In Fig. 1 we show the xy projection of the orbital trajec-
tories for the two highest resolution runs. From the figure
we can see that the initial jump in the orbit pushes the
binary slightly outside the ISCO leading to an additional
orbit. In Fig. 2 we show the orbital radius as a function of
time and resolution. Note that the orbital radius super-
converges at low resolution and converges quadratically
at high resolution (indicating that time prolongation ef-
fects are important). In Fig. 3 we show the imaginary
part of the (` = 2,m = 2) mode of ψ4 (the real part shows
considerable noise to due AMR boundary reflections of
the initial burst), as well the eighth-order convergence of
the phase of this mode.

The apparent superconvergence in the trajectories and
waveforms when considering the three coarsest resolu-
tions is indicative that the lowest resolution is just en-
tering the convergence regime. That is, this resolution
cannot be far from the convergence regime because all
four resolutions lie in a monotonic convergence sequence.
And importantly, the deviations between the next three
resolution are very small compared to the deviation be-
tween the lowest two resolutions, indicating that these
three resolutions are safely inside the convergence regime.

Finally, in Fig. 4 we show the remnant spins and to-
tal radiated mass as a function of mass ratio for q =
1/10, 1/15, 1/100 and the predictions based on our em-
pirical formula [27]. Note that no fitting is involved in
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TABLE II: Remnant horizon parameters and radiated energy-
momentum. Here we provide δM∗

H = MADM − MH and
δS∗H = JADM − SH , which are small numbers obtained by
taking the difference between two much larger numbers. The
calculation of δSH is relatively inaccurate because it requires
an extrapolation to infinite resolution.

Erad 0.000060± 0.000001 δM∗
H 0.00007± 0.00001

Jrad 0.00050± 0.00002 δS∗H 0.0003± 0.0002
α 0.0333± 0.0002
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FIG. 1: An xy projection of the trajectories for the two high-
est resolutions of the q = 1/100 configuration. The dotted
circle corresponds to the ISCO radius while the small filled
in circle corresponds to the point on the trajectory where a
common horizon is first detected. Note the initial “jump” in
radius (see Fig. 2).
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FIG. 2: The orbital radius as a function of time and resolution
for the q = 1/100 configuration. Note the initial “jump” in
the orbit due to the initial data.
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FIG. 3: The imaginary part of the (` = 2,m = 2) mode of ψ4

(which is less noisy than the real part) and the convergence
of the phase φ of this mode. Note that the phase converges
to eighth order at these resolutions.
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FIG. 4: The remnant spin a/MH and the radiated mass from
infinite separation δM/M , as a function of the symmetric
mass ratio η = q/(1 + q)2, for q = 1/10, 1/15, 1/100, as well
as the empirical formula prediction.

this figure.
The amount of energy and angular momentum ra-

diated when the (2, 2) mode frequency is larger than
ω2,2 > 0.167 is given by δE = 0.000047 ± 0.000001 and
δJ = 0.00034± 0.00001, which agrees to within 4% with
the particle limit predictions of δE/M = 0.47η2 and
δJ/M2 = 3.44η2 [28].

Conclusions and Discussion: We have successfully
evolved a 1:100 BBH system for the last couple of or-
bits before merger and down to the final Kerr hole rem-
nant. We have achieved this within the moving punctures
approach by adapting the gamma-driver shift condition
with a variable damping term. Also crucial for evolu-
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TABLE III: Remnant spin and total radiated mass (starting
from infinite separation) as a function of mass ratio q as mea-
sured in our simulations and as predicted by our empirical
formulae.

q 1/10 1/15 1/100
α (Comp) 0.2603 0.18875 0.0333
α (Pred) 0.2618 0.1903 0.03358
δM (Comp) 0.00826 0.00507 0.000618
δM (Pred) 0.00806 0.00498 0.000604

tions is an optimal choice of the mesh refinement struc-
ture around the small black hole. We used the Regge-
Wheeler-Zerilli potentials to guide the setting up of the
initial grids. This helps optimizing the large resources re-
quired to evolve small q binaries. The numerical conver-
gence of the waveforms displayed here and the successful
comparisons with perturbative results [12, 13] show this
approach is validated in the intermediate mass ratio re-
gion and can be applied to even smaller q’s (and larger
initial separations into the post-Newtonian regime).

The feasibility of simulating extreme mass ratios by
purely full numerical methods as demonstrated in this
work allow us to look more optimistically at the task of
generating a bank of templates for both Advanced LIGO
and LISA gravitational wave detectors [29]. Methods like
those described in [12, 13], that combine NR and pertur-
bative techniques can be used to speed up the generation
of those templates. And finally we now have a direct way
of validating self-force computations [6].

The techniques presented here should straightfor-
wardly apply to even smaller mass ratios q and to initially
spinning black holes. Fine tuning of the quasicircular or-
bital parameters plays an important role in preparing
these runs given the very low level of gravitational ra-
diation they generate. So far we see that the method
[30] developed for equal mass BBHs to lower e seems still
to work, but it requires extra runs for experimentation.
Hence it would be important to evolve initial data with
lower spurious radiation content and some true inspiral
wave information [31].
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