
Visualization à la UnixTM

Hans-Peter Bischof (hpb [at] cs.rit.edu)
Department of Computer Science

Golisano College of Computing and Information Sciences

Rochester Institute of Technology

One Lomb Memorial Drive

Rochester, NY 14623-5603, USA

Tim Peterson (tjp4434 [at] cs.rit.edu)
Department of Computer Science

Golisano College of Computing and Information Sciences

Rochester Institute of Technology

One Lomb Memorial Drive

Rochester, NY 14623-5603. USA

Abstract A visualization framework can be seen

as a solution to a specialized data flow problem.

Spiegel1 is a visualization framework which uses

the Unix pipeline model to execute programs that

visualize scientific data. A visualization program

in Spiegel is constructed out of simple components

with communication endpoints which can be con-

nected together. Spiegel provides a graphical pro-

gramming environment, which can be used to write

programs using these components. This paper de-

scribes the language used to define a Spiegel pro-

gram, the graphical programming environment, and

the Spiegel architecture.

Keywords: Visualization framework, graphical program-

ming environment, data flow

1Spiegel is the German word for mirror. Like the mirror

in a telescope helps to observe the universe, Spiegel helps to

observe the simulation of objects in space.

1 Visualization Environments

Visualization systems can be broadly categorized as
closed systems, like IRIS Explorer [?], or toolkits,
like that described in [?]. Applications in the first
group can be extremely powerful and can produce
excellent visualizations. However, it is difficult to
impossible to add desired functionality that is not
already available. For example, it is very difficult
to follow a specific particle in IRIS Explorer with a
camera.

Toolkits address the final step in the visualization
process, rendering output, but they are of no help as
a framework to create complete visualizations, which
require operations such as data pre-processing and
changing the phase space of data.

Most applications use one visualization toolkit,
which is sometimes not extensible, such as OpenGL
[?] or VTK [?]. As a consequence of this, toolkits
which are better suited for the problem cannot be
used.

In this paper we will present an extensible visual-
ization framework, which allows using and combining
the best of both worlds. The framework allows the

use of the best suitable visualization toolkit and it
provides an environment which allows creating highly
specialized visualizations.

2 Introduction

UnixTM [?] was born in 1969, and became an im-
mediate success amongst developers and researchers.
One of the main reasons for the success of Unix
amongst developers was the fact that powerful new
commands could easily be developed by piping data
through a set of commands. Also, adding new compo-
nents was easy, as no special code must be developed
in order for a new component to participate in the
pipeline stream. The operating system takes care of
the communication mechanism between the compo-
nents. The trick now became to write components on
the one hand small enough to solve a specific prob-
lem, but on the other hand configurable enough so
that they could be used in multiple ways. Command
line options were used to influence the behavior of
the commands; for example, sort’s −n option forces
the output be sorted in numeric order rather than
in lexicographic order. Shell scripts can be stored
in files, and, if written correctly, they can be exe-
cuted on every Unix operating system which has the
required shell and commands. Neither the shell nor
the programs used in the shell script need to know
how to communicate or how to be executed. The en-
vironment, i.e. the Unix operating system, takes care
of such details as fork, pipe, signals, etc. [?]

A visualization program in Spiegel is constructed
out of small, simple components whose communica-
tion endpoints are connected together. Each com-
ponent provides one or more typed communication
endpoints. The functionality of each component can
be fine tuned using arguments. New components can
be easily added to the pool of usable components by
creating a Java class in an appropriate directory, sim-
ilarly to adding a component to a shell search path.
The program is then read by a runtime environment
and executed, similarly to how a Unix shell executes
a Unix pipeline. The result of a visualization done
with Spiegel is a series of two or three dimensional
images that can be combined into a movie, a pro-

Figure 1: Spiegel Pipeline Architecture

cess that can also be done within the Spiegel runtime
system.

The next chapters describe the concept of the
Spiegel pipeline architecture and the programming
language it implements, followed by a chapter de-
scribing how new components can be added to the
system. The paper concludes with a comparison of
Spiegel with other existing systems.

3 Data Flow Architecture

In a Unix environment, the output of a program can
only be piped to one other program, and a compo-
nent has typically one input channel (stdin) and one
output channel (stout). popen() connects the stdout

stream with stdin and the Unix operating system
takes care of the buffering and the execution of the
processes.

In a visualization system it is very often the case
that output of one component must become the in-
put of many components and that a component can
combine multiple inputs. Therefore, a Spiegel pro-
gram can be represented as a directed acyclic graph.
A data flow graph in Spiegel can be divided into four
functionality groups: extracting of data, filtering of
data, converting data into visual components, and
finally displaying or storing the data.

Figure 1 shows the overall data flow structure.
The four data flow layers:

• Extraction Layer: An extractor component
reads the data from the source, which is typ-
ically a file or a network communication end-

point. An extractor knows the structure of the
input stream.

• Filter Layer: A filter component filters only the
objects out of the pipeline stream which are to be
considered in the visualization. Typically several
specialized filters are used to extract the desired
information. A filter can also convert the data
into a different phase space.

• Visualization Layer: A visualizer component
converts the data stream from the filters into a
structure which can be visualized.

• Display Layer: A display component finally cre-
ates a visual. The visual can be a shown on a 2D
monitor or in a 3D projection system, or stored
to disk for later processing.

The data may flow through many components in
each category in order, but data typically does not
flow backwards. Unlike Unix, each input and output
channel has a data type assigned with it, and only
matching communication channels can be connected.

3.1 Hello World

The graphical programming environment makes it
easy to create programs. The resulting program
can be stored and executed later on. A basic
”Hello World” program may look like Figure 2.
The Extractor Stars reads the data from the file
theSimulation.sim and sends its result to the visu-
alizer Stars3D. Stars3D converts the data into a
visual scene, which is then sent to the display object
Camera3D. Camera3D shows a visual representa-
tion of the scene on a screen. The clock sends out a
time value to the extractor, which triggers the eval-
uation of Stars, which results in an update of each
component in turn, until finally Camera3D displays
the resulting image.

3.2 Extracting and Using Data

In a Unix environment each component evaluates its
arguments before any data processing occurs. A sim-
ulation, which creates the input for a visualization,

Figure 2: Hello World à la Spiegel

Figure 3: Arguments reevaluated

has a notion of time. The data for each time step rep-
resents the state of the model at a given moment in
time. The the extractor for a visualization has to read
the data for a given moment in time and send it along
its output channels. This invalidates the receiver’s in-
put data, which then triggers a re-evaluation of the
receivers arguments, before the receiver processes the
incoming data. For example, if a camera should fol-
low a specific particle, we need to know where the
particle is, and send the position of the particle to
the camera before the camera renders a new image.

This technique is used in Figure 3 to center the
camera at the position of particle 1. The extrac-
tor Stars send the data to the visualizer Stars3D

and the PosOfParticle component. PosOfParticle

reads its argument, which is 1, and sends out the po-
sition of particle 1 as an argument to PosCam. This
centers the scene at the position of particle 1.

4 Distributed Computing

The visualization process of scientific data can be
very CPU- and/or memory-intensive. For example,
the density distribution calculation of galaxies has
the complexity of O(n2) [?]. Simulations of merging
galaxies used in this project contain up to 106 parti-
cles, which means that on the order of 1012 calcula-
tions are needed to determine the density distribution

cat bigFile | ssh biggie /bin/sort |

ssh biggie /bin/compress > x.z

Figure 4: Using ssh in a Unix Pipe

for one time step. It is obvious that a visualization
system would greatly benefit if the components could
be distributed over a network.

Every program in a Unix pipeline reads from stdin

and writes to stdout, even if the process is executed
on a remote machine via ssh. The operating system
takes care of all the communications needs, making
the actual data transport mechanism transparent to
the programs. Pipeline sequences like those seen in
Figure 4 are used quite often.

Spiegel uses a similar idea. Let’s take a look at fig-
ure Figure 5. BottomHalf gets as arguments values
for which remote host to use (fast.cs.rit.edu) and
then a volume description ([0-1][0-2][0-2]) that spec-
ifies that it is to compute on only half of the volume
(0-1). The execution of the component takes place
on the remote host, and the underlying communica-
tion details are taken care of by the Spiegel runtime
environment. The second part of the cube is used
on TopHalf and calculated on fix.cs.rit.edu. The
results are combined on the local machine. The de-
veloper of a component does not know nor care where
the component is actually executed.

The Spiegel runtime environment takes care of this
in a similar way to how Unix does, with one excep-
tion. If the sender and the direct receiver are ex-
ecuted on the same remote host, then the commu-
nication stays completely on the remote host. The
pipeline in Figure 4 would send the data back from
biggie and then to biggie again. This would be very
inefficient for a visualization system. The complete
graph needs to be known before execution in order to
optimize the data flow.

Figure 5: Spiegel Components are executed Remotely

5 Graphical Programming En-
vironment

The graphical programming environment (GPE) is
the part of Spiegel which is used to create visualiza-
tion systems. The GPE allows one to select compo-
nents and connect matching input and output com-
munication endpoints. The GPE also allows configu-
ration of component-specific parameters, such as the
position of a camera, the visible size of a star, etc.
The constructed program can be stored in a file. A
video of how to use the GPE can be found on the
web [?].

Every useful programming environment must be
capable of creating abstractions, i.e. creating pro-
cedures and using them. Spiegel’s GPE allows the
creation of functions which can be reused later on.
A procedure can be created using the GPE and then
stored as a file. Figure 6 shows the function PosCam.
The components appear inside the box representing
PosCam, with marks indicating the available con-
nections to outside components. It is important to
notice that the input arguments and the input and
output connections are connected to the inner compo-

Figure 6: Procedures

nents, exposing arguments of the inner components
to outside configuration. This allows the user to tai-
lor procedures for a very specific use.

The current developed GPE supports:

• Layout: All components are automatically
placed on the screen in an optimal position. We
use the Sugiyama [?] layout algorithm to produce
readable graphs. This algorithm works great, if
the components and connections are constant.
This is not the case during the creation of a
program, as the user will add and remove com-
ponents and connections until the program is
complete. Therefore, this was provided for by
making changes in component positions be done
smoothly so that the user can follow the changes.

• Hiding: Components that are not being actively
worked with can be hidden, resulting in a less
cluttered screen.

• Grouping: Components which make only sense
as group can be grouped together as one screen
object in order to save screen space.

• Functions: The GPE can be used to define func-
tions which can later be used in other programs.
The system supports defining which communica-
tion endpoints of the inner components are visi-
ble outside the function. Functions can also have
components which are themselves functions.

Each graphical Spiegel program has a textual rep-
resentation. This program can be stored as a ASCII
text file and modified with a text editor. It is also
possible to create a visualization system using a text
editor or other tools.

A Spiegel program can be loaded during startup of
the system and immediately executed. The runtime
system creates the required components and commu-
nication links.

6 Components

A Spiegel component has input and output commu-
nication endpoints, argument inputs, and it defines a
set of commands it understands.

More generally, a component for the Spiegel visu-
alization framework has

• k typed data input communication endpoints, 0
¡= k

• l typed data output communication endpoints,
0 ¡= l

• m typed argument inputs

• 1 command channel endpoint

The simulation providing input can create a stream
of data representing the state of the system as a func-
tion of time, and it can create a stream of data rep-
resenting interesting events. We call the data stream
d-stream and the event stream e-stream. A compo-
nent typically receives data from one or more input
streams, processes the data, and sends the data out
on one or more output streams.

Commands are sent to each component, for exam-
ple to change a location, through the command chan-
nel. Each component can process the command, or
discard it if it is not required. This allows, for exam-
ple, to focus all cameras with one command onto a
specific location. The command channel can be used
by a user, the simulation, or the components, to mod-
ify the behavior of the visualization system. Figure 7
show a schematic representation of the communica-
tion paths.

7 Language

A program for the Spiegel visualization framework
consists of creating and connecting components, as

Figure 7: Spiegel Pipeline Architecture

well as commands to send to the components. We
preferred to simplicity over complexity as we designed
the program.

For example, the program in Figure 6 can be de-
scribed using the program shown in 8

A procedure is defined in a very similar way as
the program shown in 6. Components are created
and connected in the same way, but additionally we
have to define which connections on the internal com-
ponents can be connected to externally by the user
of the component. This is done by the use of the
keywords connect Container. The statement Con-

tainer output size to Camera3D input size creates
a input communication endpoint to the procedure,
named size, which is connected to the Camera3D in-
put named size. This technique allows the use of
procedures within procedures.

8 Conclusion

Spiegel is a visualization framework that provides the
means for communication in a data-flow approach to
data visualization. A language defines a visualization
program, which is then executed by the runtime en-
vironment. It is very easy to add new components or
use different visualization toolkits. Bethel states in
[?] that interoperability of visualization software and
data models is not an achievable goal. We believe
have shown that it is.

Acknowledgments.

We would like to thank Dr. David Merritt and his
research team and Dr. Campanelli and her research

a new object of type File will

be created, and the object

is called FileO

new spiegel.plugins.input.File FileO

the command set will be

sent to FileO with the

filename theSimulation.sim

FileO set file theSimulation.sim

a new object of type Stars3DO

will be created, and the

object is called Stars3DO

new spiegel.plugins.visual.Stars3DO Stars3DO

a new object of type Stars3D

will be created, and the

object is called Stars3DO

new spiegel.plugins.extractor.Stars Stars

a new object of type Camera3D

will be created, and the object

is called Camera3DO

new spiegel.plugins.util.UserFunction Camera3DO

the output named stars of

the object StarsO is

connected with the input

named stars of the StarsO object

connect StarsO output stars to Stars3DO

input stars

..

Figure 8: Textual Program

team for their support of our research efforts.

